

Quinte Source Protection Region Updated Conditions Report

Submitted to the Source Protection Committee

as part of the

Updated Assessment Report

April 25, 2019

Prepared by Mark Boone, P.Geo

Table of Contents

1	INTR	DDUCTION1
2	METH	IODOLOGY2
	2.1 IDE 2.2 RIS	ENTIFYING CONDITIONS
3	CONT	AMINANT INVENTORY REVIEW
	 3.1 Cc 3.2 Sin 3.3 Sin 3.4 Sin 3.5 Sin 3.6 Sin 3.6.2 3.7 Sin 3.8 Sin 3.8.1 3.8.2 3.8.3 	INTAMINANT INVENTORY RESULTS
	3.8.4 3.8.5 3.8.6 3.8.7 3.9 Sin 3.10 3.10. 3.10.	Assessment as a Condition13Risk Score14Sediment Data14Review of Picton Drinking Water and PWQMN data16Ye 8: FORMER INDUSTRIAL PROPERTY IN THE CITY OF BELLEVILLE16SITE 9: ZWICK'S ISLAND LANDFILL IN THE CITY OF BELLEVILLE171Environmental Condition172Assessment as a Condition22
4	3.10. 3.10. 3.10. CON	3 Risk Score 23 4 Sediment Data near Zwicks Island 23 5 Review of Belleville Drinking Water Quality Data 24 CLUSIONS & RECOMMENDATIONS 26
RE	FERENCE	

Table of Tables

TABLE 1: RISK SCORE AND DRINKING WATER THREAT CATEGORY	
TABLE 2: POTENTIAL CONDITIONS ASSOCIATED WITH A MUNICIPAL DRINKING WATER SYSTEM	
TABLE 3: PARAMETERS IDENTIFIED AS MEETING TECHNICAL RULE 126	6
TABLE 4: PARAMETERS IDENTIFIED AS MEETING TECHNICAL RULE 126	8
TABLE 5: PICTON LANDFILL PARAMETERS IDENTIFIED AS MEETING TECHNICAL RULE 126	13
TABLE 6: SEDIMENT PARAMETERS ELEVATED IN MARSH CREEK & PICTON BAY	15
TABLE 7: ZWICKS ISLAND PARAMETERS IDENTIFIED AS MEETING TECHNICAL RULE 126	22
TABLE 8: SEDIMENT PARAMETERS ELEVATED IN THE BAY OF QUINTE NEAR ZWICKS ISLAND	24

Table of Figures

FIGURE 1: TOWN OF PICTON LANDFILL SITE	12
FIGURE 2: ZWICKS ISLAND LANDFILL BEFORE & AFTER FILLING	18
FIGURE 3: SEEP FROM ZWICKS ISLAND LANDFILL	21
FIGURE 4: SURFACE OF SEEP AT ZWICKS ISLAND LANDFILL	21

Appendices

Appendix A: Certificate of Approvals
Appendix B: Groundwater & Soil Quality Data
Appendix C: Sediment Quality Data
Appendix D1: Belleville Water Quality Report
Appendix D2: Picton Water Quality Report

1 Introduction

As part of the Source Water Protection program Quinte Conservation has undertaken an inventory of drinking water threats within the vulnerable areas of the Quinte Source Protection Region. These areas include the sensitive zones around four municipal wells and seven surface water intakes serving as municipal drinking water supplies to residents of the Quinte Region. Details of these systems and associated drinking water threats are as outlined in the Quinte Region Assessment Report (March 4, 2011). Drinking water threats are identified in regards to the Clean Water Act which defines a threat as:

"an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water, and includes an activity or condition that is prescribed by the regulations as a drinking water threat."

In terms of the MOE Technical Rules (August, 2009) a threat to a drinking water source can be identified in the following ways:

- 1) Through an inventoried activity prescribed by the Clean Water *Act* as a Prescribed Drinking Water Threat (PDWT);
- 2) Through an activity identified by the Source Water Protection Committee as an activity that may be a threat and (in the opinion of the Director) a hazard assessment confirms that the activity is a threat;
- 3) Through an activity associated with a drinking-water issue; and
- 4) A condition resulting from a past landuse activity.

An earlier version of the Quinte Region Assessment Report (March 4, 2011) contained a listing of drinking water threats which were determined following the first method. No threats were identified by the Source Water Protection Committee through any of the latter three methods. The following has been prepared as part of an updated Assessment Report to consider a review of past landuse activities (potential conditions) at drinking water intakes in the Quinte Region. A summary of the information reviewed and process followed is provided below.

2 Methodology

To identify areas within intake protection zones of drinking water systems past activities were reviewed. These past activities were assessed to identify potential conditions that would be considered drinking water threats as defined by the Technical Rules (MOE, 2009). Such activities require an assessment of environmental condition in order to determine if the site presents an environmental concern to the drinking water intake.

The process that was followed to assess if conditions exist was as follows:

- 1) Review of available information pertaining to the location of potentially contaminated sites,
- 2) Confirm the location of the site within a vulnerable area,
- 3) Apply local knowledge about the location of potentially contaminated sites (current or past activity),
- 4) Review available records to determine if sufficient information was available to provide evidence of contamination,
- 5) Compare the evidence of contamination to the Technical Rule 126 (2009) to determine if the site can be classified as a condition,
- 6) Determine if the site represents a significant drinking water threat in reference to the MOE Technical Rules (2009).

2.1 Identifying Conditions

In reference to Part X1.3 of the Technical Rule 126 a condition may exist on a property where there is contamination resulting from past activities and if it meets one of the following:

- 1) The presence of a non-aqueous phase liquid in groundwater in a highly vulnerable aquifer, significant groundwater recharge area, or wellhead protection area,
- The presence of a single mass of more than 100 litres of one or more dense non-aqueous phase liquids in surface water in a surface water intake protection zone,
- 3) The presence of a contaminant in groundwater in a highly vulnerable aquifer, significant groundwater recharge area, or a wellhead protection area, if the contaminant is listed in Table 2 of the Soil, Ground Water and Sediment Standards and is present at a concentration that exceeds the potable groundwater standard set out for the contaminant in that Table,
- 4) The presence of a contaminant in surface soil in a surface water intake protection zone if, the contaminant is listed in Table 4 of the Soil, Groundwater and Sediment Standards is present at a concentration that exceeds the surface soil standard for industrial/commercial/community property use set out for the contaminant in that Table,
- 5) The presence of a contaminant in sediment, if the contaminant is listed in Table 1 of the Soil, Groundwater and Sediment Standards and is present

at a concentration that exceeds the sediment standard set out for the contaminant in that Table.

In order for a condition to be identified, documented proof of one of the above must be met. Following this the condition is ranked as significant, moderate or low through the determination of a risk score as outlined below.

2.2 Risk Score

Following the identification of a property with a condition the potential threat to drinking water was identified as significant, moderate, or low in accordance with the Technical Rules (2009). This entails determination of a risk score as follows:

Risk Score = A X B

Where:

A = the hazard rating of the condition,

B = the vulnerability score of the vulnerable area (as outlined in the relevant section of the assessment report),

The hazard rating is determined as outlined in the Technical Rules based on either a score of 10 or 6. A score of 10 is assigned where there is evidence of off site contamination or the condition is associated with the property of a drinking water system, or a score of 6 if neither applies. The threat level is then assigned as significant, moderate, or low in accordance with Table 1.

Table 1:	Risk Score a	nd Drinking	Water Thre	eat Category
----------	--------------	-------------	------------	--------------

Drinking Water Threat Level	Risk Score
Significant	Equal to or greater than 80
Moderate	Equal to or greater than 60 and less than 80
Low	Greater than 40 and less than 60

3 Contaminant Inventory Review

To provide information about the location of historic contaminated sites a review was completed of the contaminant inventory provided in the Quinte Regional Groundwater Study (Dillon, 2004) and the Bay of Quinte Remedial Action Plan Inventory of Contaminated Sites (February, 2004). The Regional Groundwater Study provided a summary of a review of records about potentially contaminated sites such as certificate of approvals, provincial, and municipal records for fuel storage, waste disposal sites and waste generators. The Bay of Quinte study also focused on a review of provincial databases to identify sources of potential contamination within the watershed.

3.1 Contaminant Inventory Results

From the review seven potentially contaminated sites in five of the designated vulnerable areas were identified as listed in Table 2.

System	Site #	Zone	Contaminant
Madoc	1	WHPA A	Commercial Property
Tweed	2	WHPA D	Closed Landfill
Wellington	3	IPZ 2	Closed Landfill
Deseronto	4	IPZ 3a	Closed Landfill
Picton	5	IPZ 3a	Waste Transfer Station
Picton	6	IPZ 2	Closed Landfill
Belleville	7	IPZ 1	Industry
Belleville	8	IPZ 1	Closed Landfill

Table 2: Potential Conditions Associated with a Municipal Drinking Water System

WHPA means Wellhead Protection Area

IPZ means Intake Protection Zone

Following identification of these sites an initial assessment of available information was completed to determine if the site meets Technical Rule 126. Further review was completed of each site to identify if documented evidence of contamination was available to establish that a condition exists. A summary of this review for each of the potential conditions is provided below.

3.2 Site 1 in the Village of Madoc

Local knowledge of landuse in the Madoc area resulted in the identification of a site requiring review. This site was situated next to the Rollins St. well in the Wellhead Protection Zone A. From available information it was indicated that there was potential for contamination of this site from fuel storage as well as vehicle and equipment repair (Ministry of the Environment correspondence,

August 8, 1980). It was also reported that the Ministry provided funding to the municipality to assist in the purchase of the property. Again, no records were available to confirm the presence of contamination. Further review of records did not provide proof of groundwater contamination.

Although contamination of groundwater in the Madoc area by hydrocarbons does exist (Historic municipal correspondence and water supply evaluations provided through internal Ministry of the Environment correspondence) there is no direct linkage to this site. This site does not have sufficient documentation to meet the definition of a concern.

3.3 Site 2 in the Village of Tweed

A closed landfill site within the Village of Tweed Wellhead Protection Area D was investigated and all available records were obtained. The Certificate of Approval for this site, as included in Appendix A, indicated the site was used for the disposal of wood waste from a planing and sawmill located in the Village of Tweed. The records indicated that this activity occurred during the 1970s and entailed the filling of a wetland area with sawdust, slab wood and scrap wood. Such activity can result in the contamination of groundwater by such things as Phenols, Tannins and Lignins, biological oxygen demand, Total Kjeldahl Nitrogen, Organic Nitrogen, Nitrates and Total Phosphorus. From our review of records and discussion with neighbouring residents there was no onsite testing done in this regard. As a result insufficient information exists to identify this property as a condition. It is recommended that groundwater quality testing be undertaken at this site to establish the impact the former landfill may be having on the aquifer.

3.4 Site 3 in the Village of Wellington

A historic landfill site is located within the IPZ2 for the Village of Wellington water supply system. Little history is known about this site other than it was reported to be used for domestic and construction debris and then covered with soil. In 2010 an environmental study was completed by Trow Consulting on behalf of The Corporation of the County of Prince Edward (September, 2010). During this study a total of six monitor wells were installed with samples collected and analysed for petroleum hydrocarbons, volatile organic compounds, polyaromatic hydrocarbons, PCBs and heavy metals. From the information provided it was reported that groundwater at this site flows northerly towards Lane Creek which drains to Lake Ontario within the IPZ2 for the Village of Wellington intake. Samples were collected from the monitor wells and submitted for laboratory analysis for a suite of parameters indicative of typical landfill contamination. The report concluded that landfill leachate exists in the groundwater and that there is potential for offsite impact. The results of analyses from the groundwater monitor wells, as included in Appendix B, were compared with Table 2 of the Soil, Groundwater Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act Ministry of the Environment July 27, 2009. From this review the parameters as listed in Table 3 were noted as exceeding the standards. As such this site can be considered a condition.

Parameter	Units	Table 2 Criteria *	MW-1	MW-2	MW-3	BW-1	
Metals							
Mercury	μg/L	0.29	4.4	0.7	1.9	<0.1	
Polynuclear Aromatic Hy	drocarbon	s (PAHs)					
Acenaphtylene	μg/L	1	10.7	<0.5	2.3	<0.05	
Anthracene	μg/L	2.4	2.5	1.1	5.1	<0.05	
Benzo(a)anthracene	μg/L	1	8	3.9	14	<0.05	
Dibenzo(a,h)anthracene	μg/L	0.2	1	<1	2	<0.1	
Fluoranthene	μg/L	0.41	13	6.2	26	<0.05	
Phenanthrene	μg/L	1	8.7	4.9	13	0.07	
Pyrene	μg/L	4.1	10	4.9	19	<0.05	
Volatile Organic Compounds (VOCs)							
Benzene	μg/L	5	0.2	0.3	0.2	270	
Tolune	μg/L	24	<0.2	0.3	0.2	260	

Table 3:	Parameters	Identified	as Meeting	Technical Rule 126

*Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment July 27, 2009.

3.4.1 Risk Score

Based on the identification of this property as a condition the risk score was determined to assess whether this property is a significant, moderate or low condition. The risk score was calculated as follows:

Risk Score = 10 X 3.5 = 35

Where:

- The hazard rating was assigned as 10 given the property is in the IPZ2 associated for the Village of Wellington,
- The vulnerability score of the IPZ2 was assigned as 3.5 as outlined in the Assessment Report (Quinte Conservation, March, 2011).

Given a low risk score of 35 this past landuse is not considered to be either a significant, moderate, or low drinking water threat.

3.5 Site 4 – Town of Napanee (Deseronto System)

A former landfill site is located in the Town of Napanee within the IPZ 3a for the Town of Deseronto drinking water intake. It was reported that this site was

owned and operated by the Town of Napanee from the 1950's to the early 1980's (Genivar, 2010). The site is located on a 2.4 hectare parcel of land (Part Lot 20, Concession 1, Town of Greater Napanee, Lennox & Addington County) along the Napanee River adjacent to the Napanee Water Pollution Control Plant. This site is located within the Town of Deseronto IPZ 3a.

Information about the site was taken from correspondence from Malroz Engineering Incorporated dated April 23, 2010 and Genivar dated November 3, 2010. These reports indicate that groundwater monitoring has been ongoing at the site since 2005. Contaminants of concern have been identified as petroleum hydrocarbons and heavy metals. Seasonal seeps of contaminated groundwater were reported to exist along the down gradient side of the site adjacent to the River.

3.5.1 Assessment as a Condition

To determine if the landfill site can be considered a condition with respect to the Technical Rules (2009) a review of soil chemistry data from 2004 and 2008 was completed. This data, as included in Appendix B, was compared with Table 4 of the Soil, Ground Water and Sediment Standards, potable groundwater standard (MOE, July 27, 2009). From the available data the parameters as listed in Table 4 were noted as exceeding the surface soil standard for

Industrial/Commercial/Community Property Use. In addition to the surface soil data a cursory review of groundwater data indicate petroleoum hydrocarbons fractions F2 to F4 exceed the Table 2 standard of the Soil, Ground Water and Sediment Standards, potable groundwater (MOE, July 27, 2009). Based on the detection of parameters exceeding the relevant criteria this site is considered to be a condition with the Town of Deseronto IPZ3a.

Parameter	Units	Table 4 Criteria *	BH16	BH17
Arsenic	µg/g	18	20	-
Cadmium	µg/g	1.9	13.5	3.6
Copper	µg/g	230	269	-
Lead	µg/g	120	884	644
Zinc	µg/g	340	4730	681
Anthracene	µg/g	0.67	4.12	1.06
Benzo(a)anthracene	µg/g	0.96	23.3	-
Benzo(b)fluoranthene	µg/g	0.96	39.8	1.9
Benzo(a)pyrene	µg/g	0.3	20.6	1.08
Benzo(k)fluorenthene	µg/g	0.96	8.23	-
Chrysene	µg/g	9.6	19.7	-
Dibenzo(a,h)anthracne	µg/g	0.1	11	0.77
Fluoranthene	µg/g	9.6	30.6	-
Indeno(1,2,3-cd)pyrene	µg/g	0.76	36.6	1.52
Phenanthrene	µg/g	12	17.4	-
PHC-F4	µg/g	3300	25100	-

Table 4: Parameters Identified as Meeting Technical Rule 126

*Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment July 27, 2009.

3.5.2 Risk Score

Based on the identification of the landfill as a condition the risk score was determined to assess whether this property is considered a significant, moderate or low condition. This score was calculated as follows:

Risk Score = 10 X 7.2 = 72

Where:

- The hazard rating was assigned as 10, given the property is in the IPZ3a associated for the Town of Deseronto Intake,
- The vulnerability score of the IPZ3a was assigned as 7.2 as outlined in the Assessment Report (Quinte Conservation, March, 2011).

Given a risk score of 72 this past landuse is considered to be a moderate threat for the Town of Deseronto drinking water.

3.6 Site 5 Town of Picton Waste Transfer Station

A review of records resulted in the identification of two landfill sites in the intake protection zone for the Town of Picton drinking water system. One of these sites (Site5) is referred to as the Town of Picton Waste Transfer Station on Church

Street. The other site (Site 6) is the former Town of Picton Dump located at Delhi Park adjacent to Marsh Creek as located by Map 1. The review of Site 5 is discussed in Section 3.7.

A review of the Certificate of Approval Number 350102 (as included in Appendix A) indicates the Picton Waste Transfer site was licensed as a waste disposal site for the disposal and burning of wood waste only. The current certificate 350104 no longer permits waste disposal, but indicates the site is to be used for a transfer station for municipal waste only. Discussion with representatives of Prince Edward County indicated no recollection that burial of waste occurred. Additionally, it was reported that there has been no testing for contamination at this site. Further discussion with Ministry of the Environment representatives indicated that a recent site inspection was completed and there does not appear to be evidence of land filling. Local knowledge is that it was common practice at this site to burn brush and wood. Regardless of past use there is insufficient information to allow the assessment of the site as a condition in regards to Technical Rule 126 (Ministry of the Environment, 2009). Note that this does not mean that contamination does not exist.

3.7 Site 6: The Town of Picton Landfill

The Town of Picton operated a landfill site from approximately the early 1900s until 1979. This site, as illustrated by Map 1, is located within the Town of Picton IPZ2. The site was developed through the filling of a wetland along the banks of Marsh Creek. Historic maps, as illustrated by Figure 1, show the area of filling. Over the lifespan of the site it is believed that agricultural and canning industry waste were land filled in the early 1900s. Domestic waste was land filled starting in the 1940s and finally construction debris was deposited during reconstruction of the Town's Main St. in the 1970s. The landfill was closed in 1979 and a 0.6 metre thick cap of clean fill was placed over the site followed by redevelopment as a Park in the early 1980s. A copy of the Certificate of Approval is provided in Appendix A.

3.7.1 Environmental Condition

To assess whether the site is considered to be a condition a review was completed of a hydrogoelogical assessment of the site completed in 1988 (Water & Earth Science & Associates, 1988). Other information was reviewed to provide additional detail regarding potential overall impact including water quality data for the Town of Picton drinking water system, surface water quality of Marsh Creek and sediment quality in Marsh Creek and Picton Bay.

A review of the Hydrogeological Assessment report indicated that the assessment included the installation of monitor wells, surface water sampling sites and seepage meters in Marsh Creek at the locations illustrated by Map 1. A discussion of the results of this assessment is as provided below.

3.7.2 Groundwater

A total of five boreholes were installed at the site with four constructed as monitor wells and the remaining as a gas probe. Some of the wells were constructed as multi level with deep and shallow zones. Samples were collected from the monitor wells in 1988 and analysed for inorganic and organic parameters with the data as summarized in Appendix B.

Measurement of the monitor wells indicated groundwater flow at the site is towards Marsh Creek and Picton Bay with vertical gradients suggesting the site is in an area of groundwater discharge. Under these conditions, contaminants generated at the site may discharge into Marsh Creek. Elevated levels of parameters indicative of leachate (iron, manganese, chloride, calcium and sodium) from a landfill were detected in the monitor wells but overall thought to represent low strength leachate. The low strength of the leachate was thought to be potentially related to shallow depth of the landfill (3 to 6 metres). The rapid flow of groundwater through this area of groundwater discharge may also minimize the amount of time of leaching as well as flush contaminants out of the site. Higher concentrations of inorganic parameters were determined in the shallow groundwater and associated with contamination from the landfill. Measurable levels of volatile compounds were found in one of the monitor wells (P1-2) including hydrocarbons, chloroform, tetrachloroethylene, and trichlorofluoromethane. These contaminants may be derived from petroleum products, solvents, dry cleaning fluids, and Freon used in refrigeration.

3.7.3 Surface Water

It was reported that landfill operations was recommended to maintain a 30 metre separation from Marsh Creek. However this recommendation did not appear to be followed (Water & Earth Science Associates, 1989). Water quality monitoring of the creek by the Ministry of the Environment in 1971 and 1979 found the landfill to be impacting on the creek with some parameters identified at higher levels in 1977 than in 1971.

Map 1

MARSH CREEK AND SURROUNDING WETLAND - 1878

LANDFILL DESCRIPTION

Figure 1: Town of Picton Landfill Site

Monitoring in the creek by Water & Earth Science Associates in 1988 indicated an improvement of quality over sampling completed in 1977. This monitoring included sites up and down stream of the sewage treatment plant discharge to allow assessment of water quality parameters potentially originating from the sewage plant as opposed to the landfill site. As a result parameters were detected that were indicative of leachate from the landfill. This included low levels of both inorganic and volatile organic compounds with levels increasing as the creek traverses through the site. The levels of these contaminants were reported as being below the drinking water standards at that time and it was speculated that the impacts of this leachate would likely be immeasurable in Picton Bay due to biodegradation and dilution. The overall degradation of water quality was speculated as not being severe, however an oily film and scum were reported to exist on the creek during periods of low flow (WESA, 1989).

As part of that study two seepage meters were also established in the Marsh Creek to measure the quality of groundwater discharging to the creek. Analysis of a sample from one of the sites confirmed the discharge of groundwater as the quality was similar to groundwater.

3.7.4 Assessment as a Condition

To determine if the landfill site can be considered a condition with respect to the Technical Rules (2009) a review of the 1988 groundwater data was completed for comparison with Table 2 of the Soil, Ground Water and Sediment Standards, potable groundwater standard (MOE, July 27, 2009). From the available data the parameters as listed in Table 5 were noted as exceeding the potable drinking water standard. The results of analysis are from samples collected at monitor well P1-2 at a depth of 6 metres.

Parameter	Units	Table 2 Criteria *	P1-2
Chloroform	ug/l	2.4	90.7
1,1 Dichlorethylene	ug/l	1.6	2.8
1,1 Dicchlorethane	ug/l	5	7.9
Ethylbenzene	ug/l	2.4	12
Trichlorfluoromethane	ug/l	150	540
1.4 Dichlorobenzene	ua/l	1	1.2

Table 5:	Picton	Landfill	Parameters	Identified a	s Meetina	Technical	Rule 126
	1 101011	Lanann	i urumeters	lucilitieu u	5 meeting	1 connour	

*Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment July 27, 2009.

Based on the detection of these parameters above the standards the site is considered a condition within the Town of Picton IPZ. These parameters are organic and related to a group of chlorinated hydrocarbons. Sources of such chemicals may be from solvents, refrigerants, plastics, rubber, insecticides and

pesticides. Typical disposal of items containing these chemicals is possible in the landfill site.

3.7.5 Risk Score

Based on the identification of the landfill as a condition the risk score was determined to assess whether this property is considered a significant, moderate or low condition. This score was calculated as follows:

Risk Score = 10 X 9.0 = 90

Where:

- The hazard rating was assigned as 10, given the property is in the IPZ2 associated for the Town of Picton Intake and past evidence suggests there is offsite impact,
- The vulnerability score of the IPZ2 was assigned as 9.0 as outlined in the Assessment Report (Quinte Conservation, March, 2011).

Given a risk score of 90 this past landuse is considered to be a significant drinking water threat.

3.7.6 Sediment Data

Additional information about environmental quality was provided through review of sediment quality data for samples collected form Marsh Creek and Picton Bay. This information was taken from a Summary of Recent Sediment Investigations for the Bay of Quinte, Lake Ontario National Water Research Institute September, 2006. This overview included a summary of eight independent studies completed since 1995 with some of the studies focused on individual areas and others spread through the Bay with sampling intensity based on proximity to urban centres and the tributary mouths of creeks and rivers.

From this compilation, two sampling sites were noted in the general area of the Picton intakes as illustrated by Map 1. One station (labeled as EHD-6) is located near the mouth of Marsh Creek where it discharges to Picton Bay, downstream of the landfill site and the sewage treatment plant outfall. This site was part of an Environment Canada study when samples were collected between July and November of 2003. During this study surface sediment samples were taken to a depth of 1-2 cm and analysed for trace metals, PCBS, as well as PAHs.

The other site (labeled as 2031) was also part of an Environment Canada study and is located near the drinking water intake. Bulk sediment samples were collected and analysed for trace elements including Mercury, Total Phosphorus, Total Kjeldahl Nitrogen, and Total Organic Carbon. Analysis for PCBs and PAHs was not completed. To assess sediment quality at these locations a review of the data, as included in Appendix C, was completed in respect of Table 1 of the Ministry of the Environment Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (July 27, 2009). Parameters noted as being elevated above the standards are as listed in Table 6.

Parameter	Units	Table 1 Criteria *	2031	EHD-6
Arsenic	µg/g	6	9.49	<5
Cadmium	µg/g	0.6	1	1.3
Chromium	µg/g	26	49.1	52
Copper	µg/g	16	45.1	215
Lead	µg/g	31	73	89
Mercury	µg/g	0.2	0.167	0.647
Nickel	µg/g	16	46.1	9
Silver	µg/g	0.5	0.25	11.3
Zinc	µg/g	120	179	504
Fluoranthene	µg/g	0.75	n/a	1.11
Phenanthrene	µg/g	0.56	n/a	0.852
РСВ	µg/g	0.07	n/a	0.11

 Table 6: Sediment Parameters Elevated in Marsh Creek & Picton Bay

*Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment July 27, 2009.

From the sediment sample at the mouth of Marsh Creek it was found that many of the parameters related to trace metals were elevated. However, many of these parameters are commonly elevated in sediments throughout the Bay of Quinte. A review of relevant studies indicates that effluent from sewage treatment plants can contribute to elevated levels of heavy metals and some may be naturally occurring such as Cadmium and Zinc which may be related to the geology of the limestone bedrock. A study of water quality in the Bay suggested that the major tributaries may contribute significantly to levels of heavy metals in the Bay. Water quality data at Marsh Creek as reported in the Bay of Quinte Rap reports (Beak, 1988) indicate elevated levels of Copper, Zinc, Lead, Nickel, Iron and Phenols at Marsh Creek.

In addition to the heavy metals, organic parameters including fluoranthene, phenanthrene, and PCBs were found to be elevated at the Marsh Creek site. The first two parameters are classed as polyaromatic hydrocarbons and were not reported to be prevalent throughout the sediments in the Bay of Quinte but can be found near urban centres. These parameters are closely associated with coal tar, however there is no record of a coal gasification plant in this vicinity. PCBs were reported to be slightly elevated throughout the Bay but generally not exceeding the standard. Coincidentally, Marsh Creek was one of the few sites where the concentration exceeded the standard. This occurrence may be related to the discharge of sewage treatment plant effluent upstream. Overall, the detection of the elevated levels of heavy metal and organic parameters may be related to the landfill, yet insufficient evidence exists to pinpoint this as a source due to other potential sources of contamination in the area.

For the station near the drinking water intake (station 2031) trace metal parameters were detected above the standard similar to the general quality of sediments throughout the Bay. The exception was Arsenic which has been recorded at elevated levels near the mouth of the Moira River and is attributed to historical mining and smelting operations at Deloro farther up the Moira River system. The other parameters may be associated with sources as discussed for the site at Marsh Creek given they were also elevated at that location. Note that analysis of organic parameters was not completed at this location.

3.7.7 Review of Picton Drinking Water and PWQMN data

Given the identification of elevated parameters in the groundwater and sediments additional review of other data has been completed to determine if correlation exists between the detection of indicator parameters and the water quality at the PWQMN station on Marsh Creek and the Picton Drinking Water Plant. A detailed review of this information is provided in Appendix D and summarized below.

From this review it was found that the 5 of the 6 groundwater contaminants were tested and detected in the raw water at the Picton drinking water intake. Of the 12 parameters found to be elevated in the sediment ten were detected in the raw water. As regards the Provincial Water Quality Monitoring Station on Marsh Creek none of the groundwater parameters are tested for in the regular monitoring at the Creek, however, 8 of the 12 sediment parameters are. Monitoring of the quality of storm water includes 6 of the contaminants found in the sediments. All six were detected during periods of wet weather suggesting this is a contributing factor.

In reference to this review and detection of elevated parameters it is recommended that the water quality monitoring programs continue.

3.8 Site7: Former Industrial Property in the City of Belleville

Two sites that could be considered conditions were identified within the vulnerable area for the City of Belleville drinking water system. Site 6 is a former industrial property located within the IPZ2. Site 8 is the closed Zwicks Island landfill site located in the IPZ1. A discussion of the findings for Site 7 is presented in Section 3.9.

An industrial property located within the City of Belleville near Bridge and Sidney Streets was identified as being potentially contaminated. Detailed information about this site (Site6) was provided by the City of Belleville and included reports on Phase 1 and 2 Environmental Site Assessments and a work plan for the Phase 3 cleanup. From these reports it was found that property was previously used by a company manufacturing electrical circuit boards. An assessment of the site was completed through sampling of soil and groundwater from 17 boreholes due to potential for contamination of the site by PAHs and heavy metals. This assessment identified several heavy metal parameters (Barium, Cadmium, Copper, Lead, and Zinc) as being elevated above the standards. A cleanup of the site was accomplished by excavation of contaminated soil and disposal offsite. Correspondence was provided indicating that the contaminated soils were removed from the site. It was reported that the site was cleaned up to meet the requirements of Ontario Regulation 153/04 for a record of site condition as a sensitive site. The environmental studies were peer reviewed on behalf of the City and it was reported that they were satisfactory. A follow up report and Record of Site Condition was not available. However correspondence provided by the City of Belleville indicated that the contaminated soil was removed from the site. Based on this information this site would not be considered a condition.

3.9 Site 8: Zwick's Island Landfill in the City of Belleville

The City of Belleville operated the Zwicks Island Landfill site in the 1950s and 60s for the disposal of mainly municipal waste with reports of the site also receiving some commercial, industrial, and liquid waste. The area was filled through the construction of an earthen dyking system out into the Bay of Quinte with waste deposited behind the dyke. An illustration of the filled area can be viewed from Figure 2 which includes a historic aerial photograph from 1948. After closure of the site in 1971 the landfill was covered and converted to a park.

3.9.1 Environmental Condition

Over the years a number of studies have been completed on the closed landfill site to assess environmental impact. For the purposes of this review information contained in the following two reports was considered.

Zwick's Island Landfill Environmental Investigations Final Report, Ontario Ministry of the Environment, October 1991,

Report on 2008 Environmental Monitoring Program Zwick's Centennial Park, Belleville, Ontario. Golder & Associates, March 2009.

Aerial Photograph 1 (Roll No. A11795-73) Zwick's Island, Belleville, December 3, 1948

Aerial Photograph 2 (Roll No. 92032-10-132) Zwick's Island, Belleville, May 6, 1992

Figure 2: Zwicks Island Landfill Before & After Filling

From review of the 1991 Ministry of the Environment Report it was reported that a network of nine monitor wells and 10 surface water stations was established in April of 1990. These stations were sampled in May and August of 1990 for parameters indicative of landfill leachate. As a result it was found that groundwater flows radially outward from the site towards the Bay of Quinte. Analysis of samples of groundwater found the site to be impacted by landfill leachate, however the overall strength of the leachate was thought to be low.

This low strength was attributed to how the waste was deposited (filling of the Bay) with significant flushing of contaminants and dilution. Parameters that were detected in the groundwater included Benzene, Toluene, Trichloroethane and some pesticides such as Aldrin. Analysis of surface water samples found discharge of leachate to ditches on the site, however the water quality in the Bay was found to not be significantly poorer than water farther off shore. Regardless it was reported that there is continual loading of relatively low strength landfill leachate to the Bay. Continued monitoring was recommended.

To provide more up to date information about the monitoring of the Zwick's Island site a recent report prepared by Golders & Associates (2009) was reviewed. This study included the sampling of 10 groundwater monitoring wells, as located by Map 2, with analysis for a complete suite of parameters. Groundwater flow was determined as radially outward from the northwest corner of the site generally beneath the perimeter of the berm along the Bay of Quinte. The presence of leachate at the site was confirmed with detection of levels of petroleum hydrocarbons, volatile organic carbons, and other key indicator parameters.

Monitoring of surface water quality included the sampling of 11 stations in the spring and fall as well as three precipitation event samplings. This sampling indicated water quality as generally similar to background with marginally elevated levels of key indicator parameters. Parameters noted as exceeding the Provincial water quality objectives were Total Phosphorus, Iron and Copper. Non point discharge of leachate occurs around the perimeter of the site however, there are three areas of point leachate discharge at the ditch near the Ramada Inn Hotel draining eastward (surface water station SW1), a ditch at the bay at surface water station SW8 and the embayment at the west near stations SW4 and SW9. Leachate is observed to discharge at the shoreline of this embayment subject to the water level in the Bay. Photos of this area of discharge and surface of the discharge are illustrated by Figures 3 & 4. Water guality at these points of discharge were noted to be indicative of leachate with elevated levels of Phenols, Total Phosphorus, Iron, Fluoride, Ammonia, Aluminum, Arsenic, Cadmium, Cobalt, Lead, Vanadium, Zinc, Phenanthrene, and Total Suspended Solids. Acute lethality testing for Rainbow Trout and Daphnia magna were completed at these locations from samples collected at these sites in 2008. All of the lethality tests were reported as pass. Nevertheless, continued monitoring was recommended.

Map 2

Figure 3: Seep from Zwicks Island Landfill

Figure 4: Surface of Seep at Zwicks Island Landfill

3.9.2 Assessment as a Condition

To determine if the site represents a condition a review of the available data was compared with the Ministry of the Environment Technical Rule 126. Based on these rules the data from 2 monitor wells located within the IPZ was reviewed and compared with Table 2 of the Soil, Ground Water and Sediment Standards, potable groundwater standard (July 27, 2009). From the available data, as included in Appendix B, the parameters as listed in Table 7 were noted as exceeding the potable drinking water standard.

The results of analysis are from samples collected at monitor well BH4 and BH8 which both extend to approximate depths of 4.6 metres and are located within the limits of the IPZ1. These parameters are organic and related to a group of chlorinated hydrocarbons. Sources of such chemicals may be from solvents, refrigerants, plastics, rubber, insecticides and pesticides. Typical disposal of items containing these chemicals is possible in the landfill site. Based on the detection of these parameters above the standard, the site is considered a condition within the City of Belleville IPZ1.

Parameter		Table 2 Criteria *	BH 4	BH 8			
BNAs, PAHs, and Phenols							
Benzo(a)anthracene	μg/L	1		1.9-3.4			
Benzo(a)pyrene	μg/L	0.01	0.09-0.24	0.09-2.7			
Benzo(b)fluoranthene	μg/L	0.1	0.2	0.2-3.6			
Benzo(g,h,i)perylene	μg/L	0.2		0.75-1.3			
Benzo(k)fluoranthene	μg/L	0.1	0.2	0.13-1.4			
Chrysene	μg/L	0.1	0.27	0.24-3.1			
Dibenzo(a,h)anthracene	μg/L	0.2		0.33			
Fluoranthene	μg/L	0.41		0.73-6.4			
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.27	0.27-1.4			
Pyrene	μg/L	4.1		4.6-4.9			
Petroleum Hydrocarbons and PCBs							
Petroleumb Hydrocarbons F2 (>C10- C16)	μg/L	150		х			
Metals							
Cadmium	mg/L	0.0027	0.005	0.0039- 0.005			
Cobalt	mg/L	0.0038	0.05	0.05			
Lead	mg/L	0.01	0.05	0.05			
Molybdenum	mg/L	0.07	0.2	0.2			
Silver	mg/L	0.0015	0.005	0.005			
Pesticides							

Table 7:	Zwicks Island	Parameters	Identified a	is Meetina	Technical	Rule	126

Parameter	Units	Table 2 Criteria *	BH 4	BH 8			
Heptachlor Epoxide	μg/L	0.048		0.05			
Volatile Organic Compounds							
1,4-Dichlorobenzene	μg/L	1	2.9-13.8	1.5-5.5			
Benzene	μg/L	5	6.6-9.7	5			
Bromomethane	μg/L	0.89	0.2-10.0	0.2-10.0			
Vinyl Chloride	μg/L	0.5	0.2-10.0	0.2-10.0			

*Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment July 27, 2009.

3.9.3 Risk Score

Based on the identification of the landfill as a condition the risk score was determined to assess whether this property is considered a significant, moderate or low condition. This score was calculated as follows:

Risk Score = 10 X 9.0 = 90

Where:

- The hazard rating was assigned as 10 given the property is in the IPZ1 associated with the City of Belleville Intake and offsite impact,
- The vulnerability score of the IPZ1 was assigned as 9.0 as outlined in the Assessment Report (Quinte Conservation, March 4, 2011).

Given a risk score of 90 this past landuse is considered to be a significant drinking water threat.

3.9.4 Sediment Data near Zwicks Island

Information about sediment quality was obtained through a review of a compilation of studies on sediment quality in the Bay of Quinte (Summary of Recent Sediment Investigations for the Bay of Quinte, Lake Ontario National Water Research Institute September, 2006). This overview included a summary of eight independent studies completed since 1995 with some of the studies focused on individual areas and others spread through the Bay with sampling intensity based on proximity to urban centres and the tributary mouths of creeks and rivers draining to the Bay.

From this compilation, the data from five sampling sites as included in Appendix C was reviewed. The location of the sampling sites is as illustrated by Map 2. These sites were part of different studies including one completed in 1997 by a private consulting company and another by Environment Canada in 2000. The 1997 study (sites Sed1, Sed2, & Sed-SW4) was completed through collection of composite samples and analysis for Polyaromatic hydrocarbons and trace

metals. The Environment Canada samples were collected as cores with analysis for trace metals, organics and nutrients.

The parameters found to be elevated are listed in Table 8 and are similar to those found in Picton Bay and Marsh Creek. Exception was that Pyrene was not found in Picton. The sources of the common parameters are likely similar as discussed for Picton and may include natural occurrences, sewage treatment plant effluent, air borne particulate matter as well as non point sources from the many tributaries draining into the Bay of Quinte. The organic parameters were reported to be elevated in the vicinity of urban centres with things like Fluoranthene and Phenanthrene, which are potentially related to coal tar. The detection of Pyrene may also be directly related to coal tar.

Some of the elevated parameters (Cadmium, Lead, Fluoranthene, and Pyrene) coincide with elevated levels of the same constituents found in the groundwater at Zwicks (listed in Table 7) and there is significant potential that this may be the source in part.

Parameter	Units	Table 1 Criteria*	SED- SW4	SED1	200610602	SED2	2007
Arsenic	µg/g	6	-	-	7.1		2.5
Cadmium	µg/g	0.6	-	0.6	1.5	0.5	1
Chromium	µg/g	26	-	24	61	47	54.2
Copper	µg/g	16	-	30	45	21	48
Lead	µg/g	31	-	<0.4	81	<0.4	74.3
Mercury	µg/g	0.2	-	-	0.81	-	0.45
Nickel	µg/g	16	-	-	24		25.5
Silver	µg/g	0.5	-	-	-	-	0.7
Zinc	µg/g	120	-	150	190	121	208
РСВ	µg/g	0.07	-	-	0.18	-	-
Anthracene	µg/g	0.22	0.0002	0.689	-	0.23	-
Fluoranthene	µg/g	0.75	0.00062	1.01	-	0.266	-
Phenanthrene	µg/g	0.56	0.00026	0.645	-	0.216	-
Pyrene	µg/g	0.49	0.00051	0.705	-	0.167	-

 Table 8: Sediment Parameters Elevated in the Bay of Quinte near Zwicks Island.

* Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment July 27, 2009.

3.9.5 Review of Belleville Drinking Water Quality Data

Given the identification of elevated parameters in the groundwater and sediments additional review of other data has been completed to determine if correlation exists between the detection of indicator parameters and the treated water quality at the Belleville Drinking Water Plant. A detailed review of this information is provided in Appendix D with a summary as provided below.

From this review it was found that most of the indicator parameters are monitored in the treated water at the Belleville intake. In total 37 contaminants from either sediment or groundwater data were detected in raw water at the intake. However, six of the indicator parameters are not routinely tested in the raw water (see Appendix D for the list).

4 Conclusions & Recommendations

- 1.0 Based on review of available information nine potential conditions within the vulnerable areas of six drinking water systems were identified. These sites are closed gas stations, closed landfill sites and an industrial property.
- 2.0 Review of available information for sites located in Madoc and Tweed did not provide enough data to allow assessment of the sites as conditions. Nevertheless, the absence of such information is expected considering that such data either does not exist or rarely becomes public. Therefore, it is possible that condition-related drinking water threats do exist; however, no data is available to either confirm or refute this possibility.
- 3.0 Review of recent information for a closed landfill located within the Village of Wellington IPZ2 indicated this site to be classified as a condition. However, determination of the risk score indicated the score was not high enough for this area to be considered a drinking water threat.
- 4.0 A closed municipal landfill site is located within the Town of Napanee along the Napanee River. This property is located down gradient of the drinking water intake for the Town of Napanee but is within the IPZ3a for the Town of Deseronto drinking water system. A review of recent soil and groundwater data indicated heavy metal and petroleum hydrocarbon parameters as exceeding the relevant standards to classify this property as a condition. Calculation of the risk score indicated the site is considered to be a moderate drinking water threat for the Town of Deseronto drinking water.
- 5.0 A waste transfer station located in the Town of Picton IPZ 3a was reported to be formerly used for waste disposal. A review of records indicated the site was licensed to receive wood waste but is currently used as a transfer station only. There is no evidence of actual filling at this location as it was common practice to burn the wood waste. The absence of data on the presence of contamination prevents assessment of the site as a condition in reference to the MOE Technical Rules (2009).
- 6.0 The former Town of Picton Dump was established in the early 1900's and closed in 1979. Hydrogeological assessment of the site was completed in 1988 and review of groundwater quality data for the site indicated that some parameters meet the standard for classification as a condition. The calculated risk score classified this property as a significant drinking water threat. Given the date of the data it is recommended that updated data be obtained to confirm this assessment.
- 7.0 A potential condition was identified within the IPZ2 for the City of Belleville. This site was a property which was formerly used for industrial purposes with soils assessed as being contaminated with heavy metals. Information was

provided by the City to indicate that the contaminated soils were removed from the site and the property is not considered to be a condition.

- 8.0 The Zwicks Island landfill site was identified as a condition in the City of Belleville IPZ1. Review of groundwater data from 2008 confirmed the presence of contamination in the groundwater with many parameters exceeding the relevant standard. The risk score for this site indicted that it is to be classified a significant drinking water threat.
- 9.0 This review was the first attempt at identifying contaminated sites that should be considered as conditions and drinking water threats in the source protection planning process. It is recognized that other conditions and potentially contaminated sites may exist. However in the absence of data it is not permissible to identify such sites as conditions. As such data becomes available it is recommended that the condition process be applied to address potential drinking water threats.

References

Application for Provincial Funding – Correspondence from the Village of Madoc to the Ministry of the Environment 1980's.

Beak,1988. Bay of Quinte Remedial Action Plan – An Evaluation of Persistent Toxic Contaminants in the Bay of Quinte Ecosystem Technical Report No. 1. Beak Consultants Limited. January 1988.

Biberhofer and Dunnett, 2006. Summary of Recent Sediment Investigations for the Bay of Quinte, Lake Ontario, Environment Canada, National Water Research Institute Lake Ontario NWRI 06-229, September 2006. Dillon Consulting, October, 2004, Quinte Regional Groundwater Study.

ESSA, 1988. The Bay of Quinte Remedial Action plan: An Ecosystem Based Analysis of Remedial Options. Environmental and Social Systems Analysts Limited, November 1988.

Genivar November 3, 2010, Correspondence to Greater Napanee Utilities – Re: Former Water Street landfill-Town of Greater Napanee.

Golder, 1988. Report on 2008 Environmental Monitoring Program Zwick's Centennial Park, Belleville, Ontario. Golder Associates, March 2009.

WESA, 1989. Hydrogeological Assessment of Delhi Park Waste Disposal Site, Picton. Prepared by Water and Earth Science Associates Limited, August 1989.

Malroz Engineering Incorporated – Correspondence to The Thompson Rosemount Group re: Water Street Closed Landfill, Napanee, Ontario.

Lower Trent Conservation, 2004. Potential Sources of Contamination in the Bay of Quinte Watershed. February 2004.

Ministry of the Environment, 1988. MEMO (internal) re Village of Madoc Municipal Well No. 1. August 8, 1980.

Ministry of the Environment, 1991. Zwick's Island Landfill Environmental Investigations Final Report. October 1991.

Paine, 1995. Feasibility Study for a Rehabilitation Project on Marsh Creek – Picton. Prepared by J.D. Paine Engineering Inc. January, 1995.

Ontario Ministry of the Environment. Provincial Water Quality Monitoring Network data

Quinte Region Source Protection Committee, 2011. Assessment Report. March 4, 2011

Quinte-Eco Consultants, 2004. Phase I/II Environmental Site Assessment Stage 1 Lands 161 Bridge Street West, City of Belleville, Ontario. QE 04-994. June, 2004.

Quinte-Eco Consultants, 2004. Phase I/II Environmental Site Assessment Stage 2 Lands 161 Bridge Street West, City of Belleville, Ontario. QE 04-994/01. July 2004.

Quinte-Eco Consultants, 2004. Phase III Environmental Site Assessment Workplan 161 Bridge Street West, City of Belleville, Ontario. QE 04-994-03. August/September 2004.

Trow Associates Inc., 2010. Phase II Environmental Site Assessment Wellington Community Centre, Wellington, Ontario prepared for MHPM Project Managers Inc. on Behalf of Prince Edward County. September 2010.

Corporation of the County of Prince Edward. Town of Picton Drinking Water System water quality data.

Appendix A: Certificates of Approval

Appendix B: Groundwater & Soil Quality Data

Appendix C: Sediment Quality Data
Appendix D1: Belleville Water Quality Report Appendix D2: Picton Water Quality Report

is issued to:

for the

located

1.

201

landfilling

Provisional Certificate No. Ministry of the Environment A 350101 **PROVISIONAL CERTIFICATE OF APPROVAL** WASTE DISPOSAL SITE Under The Environmental Protection Act, 1971 and the regulations and subject to the limitations thereof, this Provisional Certificate of Approval Town of Picton Box 1670 Picton, Ontario MAR 2 3 1979 Town Marsh (Licence of Occupation # 1072) Town of Picton JTON -County of Prince Edward ONTARIC subject to the following conditions: No operation shall be carried out at the site after sixty days from this condition becoming enforceable unless this Certificate including the reasons for this condition have been registered by the applicant as an instrument in the appropriate Land Reigstry Office against the title to the site and a duplicate

Site

			THIS IS A TRUE COPY OF THE ORIGINAL CERTIFICATE MAILED
			ON MAR 2 2 181 2
Provisional Certificate expire	as on the 31st	day of May	(Signed)
d this 16th day of	March		, 19 aplice

A 350101

Fla

Ministry of the Environment

PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

is issued to:		Town of Picton Box 1670 Picton, Ontario	Mills of the second sec
			IVEX 2 1 1977
for the ocated	Landfilling Town Marsh (Licence of Occ Town of Picton County of Prince Edward	cupation # 1072)	TANGER N - CETTER Site
ubject to the following conditions:			TURE OF A THUE GOPY OF THE ORIGINAL OF STREATE MAILED
			ONB
This Provisi	onal Certificate expires on the 31st	day of December	₁₉ 77
Dated this	27th day of May	10 77	,
	₩ ₩	, 19	DIRECTOR, SECTION 3 (a) E.P.A.

Provisional Certificate No. 350101

Obtable

APR 1 1 1975

BELLEVILLE OFFICE

Site

A TEASTA TEASTA TANKA TAN

Ministry of the Environment

PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

Under The Environmental Protection Act, 1971 and the regulations and subject to the limitations thereof, this Provisional Certificate of Approval is issued to: Town of Picton. 18111 STAT OF THE CAULA HALLIT

Box 1670, licton, Ontario.

for the Landfill located Town of Marsh, Licence of Operation #1072 Town of Ficton.

subject to the following conditions:

A SEASEASEASEA

An attendant shall be present on the site whenever the site is open to receive waste. 1.

- An impervious berm is to be constructed so that the waste disposal operation is contained in an area no closer than twenty-five (25) feet from the creek.
- All waste materials shall be covered with six (6) inches of earth cover material, daily, by a proper landfilling operation.

Procedures are to be established to control redents and insects at the site.

That council actively pursue alternate arrangements for the ultimate disposal of refuse with a view to completely closing the site off by January 1, 1977.

is Provisional Certificate ex	pires on the	day of	 CALP -	1 Marshine
ed this lst day o	, April	75	J. V.	Coperado
ca this day o	I	, 19	 DIF	RECTOR, SECTION 3 (a) E.P.A.
				108

Provisional Certificate No. 350101

Site

torrenal Offense

Ministry of the Environment

PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

Under The Environmental Protection Act, 1971 and the regulations and subject to the limitations thereof, this Provisional Certificate of Approval is issued to:

Town of Picton. Box 1670, Picton, Ontario.

Landfill. for the Town Marsh Licence of Operation (1072. located Town of Picton.

subject to the following conditions:

- 1. That prior to March 31, 1975, the holder of this certificate submit to the Regional ingineer a detailed proposal outlining the closing off procedure to be employed at the site.
- All waste materials shall be covered with six (6) inches of earth cover material, daily, by a proper landfilling operation.
- 3. That the waste disposal operations do not continue closer than 100 feet from the small creek that runs through the marsh.
- Procedures are to be established to control rodents and insects at the site.

This Provisional Certificate expires o	31st	day of March	, 19 7 5	22.0
Dated this day of	lovember	, 19		DIRECTOR, SECTION 3 (a) E.P.A.

Phone: 965-7752

December 1, 1973.

Town of Picton, P. O. Box #1670, Picton, Ontario.

Dear Sir:

This site (facility) does not meet the standards required by the Environmental Protection Act and Regulation.

A Provisional Certificate of Approval No. <u>350101</u> has been issued with an expiry date of <u>Lovember 15, 1974</u> During this period the following improvements shall be implemented and maintained:

An attendant shall be present on the site whenever the site is open to receive waste.

All waste materials shall be covered with six (6) inches of earth cover material, daily, by a proper landfilling operation.

Procedures are to be established to control rodents and insects at the site.

The operation of the site (facility) will be inspected periodically prior to the expiry date of the certificate. Failure to comply with this program of upgrading the site (facility) may result in refusal to reissue this certificate or such other action as is available under the Act.

> W. Williamson P. Eng., Acting Director.

Yours truly,

Department of the Environment

For Head Office U					
. 0	R				
2nd Sheet					
#					

PROVISIONAL CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL SITE

0

Provisional Certificate No...350100

Under The Environmental Protection Act, 1971 and the	regulations and subject to the
limitations thereof, this Provisional Certificate of Approval is iss	ued to
Town of Picton,	
P.O. Box 1670, Fictor, G	ntario
for the Landrill	Site
located Town of Larch, License of Operation /1072	DEPARTMENT CENTRE CONCERNENT
subject to the following conditions	MAY 29 1972
1. That all fill areas bordering the creek are regraded	to a materithin 30 composi
slope, compacted and covered with two (2) feet of clo	an earth fill.
(Davidson's letter of March 9, 1972). This work to 1	be completed by June 15, 1972.
2. That a minimum separation of twenty (20) feet be main	ntained between the creek
and any deposited wastes.	
3. That the site shall be properly closed or the install	ation of an approved
isolation system be completed no later than November	15, 1972.
SUBJECT AS MILL TO THE CONDITIONS SET OUT ON THE ATTA	CHED SHELT
This Provisional Certificate expires on the	
Dated thislothday of	, 19?

Ministry of the Environment

PROVISIONAL CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL SITE

Provisional Certificate No. 350101

P. O. Box #1670, Pi	cton, Ontario
or the Landfill	
ocated Town of Marsh,	
Licence of Operation #1072	
ubject to the following conditions	
	DEPARTMENT
	ONTARIO
	WASTE MANAGEMENT BRANCH KINGSTON OFFICE
This Provisional Certificate expires on the 30th	day of November 19.73
this riousional Certificate expires on the south	.day of

Director, Waste Management Branch

Ministry Ministère of the de Environment l'Environnement

AMENDED PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE NUMBER A350104

The Corporation of the County of Prince Edward PO Box 1550 Picton, Ontario K0K 2T0

Site Location: Picton Waste Transfer Site 37 Church Street Prince Edward County,

You have applied in accordance with Section 27 of the Environmental Protection Act for approval of:

For the use and operation of a 0.4 hectare Waste Disposal Site (Recycling and Transfer Station) for the collection and transfer of municipal waste generated by the Picton, Hallowell and North Marysburgh Wards within the County of Prince Edward.

Note: Use of the site for any other type of waste is not approved under this Certificate, and requires obtaining a separate approval amending this Certificate.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- (a) "*Certificate*" means this entire *provisional certificate of approval* document, issued in accordance with section 39 of the *EPA*, and includes any schedules to it, the application and the supporting documentation listed in Schedule "A" and Schedule "B";
- (b) "*Director*" means any *Ministry* employee appointed in writing by the *Minister* pursuant to section 5 of the *EPA* as a Director for the purposes of Part V of the *EPA*;
- (c) *"District Manager"* means the *District Manager* of the local district office of the *Ministry* in which the site is geographically located;
- (d) "EPA" means Environmental Protection Act, R.S.O. 1990, c. E. 19, as amended;
- (e) "*Operator*" means any person, other than the Owner's employees, authorized by the *Owner* as having the charge, management or control of any aspect of the site;
- (f) "*Owner*" means any person that is responsible for the establishment or operation of the site being approved by this *Certificate*, and includes the Corporation of the County of

Prince Edward, its successors and assigns;

- (g) "*OWRA*" means the *Ontario Water Resources Act*, R.S.O. 1990, c. O-40, as amended from time to time;
- (h) "PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amend from time to time;
- (i) "*Provincial Officer*" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the *OWRA* or section 5 of the *EPA* or section 17 of *PA*;
- (j) "*Regional Director*" means the Regional Director of the local Regional Office of the *Ministry* in which the *Site* is located;
- (k) "*Reg. 347*" means Regulation 347, R.R.O. 1990, made under the *EPA*, as amended from time to time;
- (1) "*Site*" means the entire waste transfer site, located at 37 Church Street, Picton, Ontario, approved by this *Certificate*;
- (m) *"Trained personnel"* means knowledgeable in the following through instruction and/or practice:
 - a. relevant waste management legislation, regulations and guidelines;
 - b. major environmental concerns pertaining to the waste to be handled;
 - c. occupational health and safety concerns pertaining to the processes and wastes to be handled;
 - d. management procedures including the use and operation of equipment for the processes and wastes to be handled;
 - e. emergency response procedures;
 - f. specific written procedures for the control of nuisance conditions;
 - g. specific written procedures for refusal of unacceptable waste loads;
 - h. the requirements of this *Certificate*.
- "white goods which contain refrigerants" means white goods which contain, or may contain refrigerants, and which include, but are not restricted to refrigerators, freezers and air-conditioning systems;

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

GENERAL

Compliance

- 1. This Provisional Certificate of Approval supersedes and replaces Provisional Certificate Number A350104 issued on November 1, 1991.
- 2. The *Owner* and *Operator* shall ensure compliance with all the conditions of this *Certificate* and shall ensure that any person authorized to carry out work on or operate any aspect of the *Site* is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 3. Any person authorized to carry out work on or operate any aspect of the *Site* shall comply with the conditions of this *Certificate*.
- 4. Except as otherwise provided by this *Certificate*, the *Site* shall be designed, developed, built, operated and maintained in accordance with the application for this *Certificate*, dated June 29, 2004, and the supporting documentation listed in Schedule "A".

Interpretation

- 5. Where there is a conflict between a provision of any document, including the application, referred to in this *Certificate*, and the conditions of this *Certificate*, the conditions in this *Certificate* shall take precedence.
- 6. Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the Ministry approved the amendment.
- 7. Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.
- 8. The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

Other Legal Obligations

- 9. The issuance of, and compliance with the conditions of, this *Certificate* does not:
 - a. relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - b. limit in any way the authority of the *Ministry* to require certain steps be taken or to require the *Owner* and *Operator* to furnish any further information related to compliance with this *Certificate*;
- 10. The Owner and Operator shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the *Site*,

including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.

11. Despite an Owner, Operator or any other person fulfilling any obligations imposed by this certificate the person remains responsible for any contravention of any other condition of this *Certificate* or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.

Change of Owner

- 12. The Owner shall notify the *Director* in writing, and forward a copy of the notification to the *District Manager*, within 30 days of the occurrence of any changes:
 - a. the ownership of the *Site;*
 - b. the *Operator* of the *Site;*
 - c. the address of the *Owner* or *Operator*;
 - d. the partners, where the *Owner* is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R.S.O. 1990, c. B-17 shall be included in the notification;
 - e. the name of the corporation where the *Owner* is or at any time becomes a corporation, other than a municipal corporation, and a copy of the most current information filed under the *Corporations Information Act*, R.S.O. 1990, c. C-39 shall be included in the notification.
- 13. No portion of this *Site* shall be transferred or encumbered prior to or after closing of the *Site* unless the *Director* is notified in advance and sufficient financial assurance is deposited with the *Ministry* to ensure that these conditions will be carried out. In the event of any change in *Ownership* of the *Site*, other than change to a successor municipality, the *Owner* shall notify the successor of and provide the successor with a copy of this *Certificate*, and the Owner shall provide a copy of the notification to the *District Manager* and the *Director*.

Inspections

- 14. No person shall hinder or obstruct a *Provincial Officer* in the performance of their duties, including any and all inspections authorized by the *OWRA*, the *EPA* or the *PA* of any place to which this *Certificate* relates, and without limiting the foregoing to:
 - a. enter upon the premises where the *Site* are located, or the location where the records required by the conditions of this *Certificate* are kept;
 - b. have access to, inspect, and copy any records required by the conditions of this *Certificate*;
 - c. inspect the practices, procedures, or operations required by the terms conditions of this *Certificate*; and
 - d. sample and monitor for the purposes of assessing compliance with the conditions of this *Certificate* or the *EPA*, the *OWRA* or the *PA*.

Information and Record Retention

- 15. Any information requested, by the *Ministry*, concerning the *Site* and its operation under this *Certificate*, including but not limited to any records required to be kept by this *Certificate* shall be provided to the *Ministry*, upon request. Records shall be retained for 5 years except for as otherwise authorized in writing by the *Director*.
- 16. The receipt of any information by the *Ministry* or the failure of the *Ministry* to prosecute any person or to require any person to take any action, under this *Certificate* or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - a. an approval, waiver, or justification by the *Ministry* of any act or omission of any person that contravenes any term or condition of this *Certificate* or any statute, regulation or other legal requirement; or
 - b. acceptance by the *Ministry* of the information's completeness or accuracy.

OPERATION and MAINTENANCE

Operation

17. The *Site* shall be operated and maintained at all time including management and disposal of all waste in accordance with the *EPA*, *Reg. 347* and the conditions of this *Certificate*. At no time shall the discharge of a contaminant that causes or is likely to cause an adverse effect be permitted.

Vermin, etc.

18. The *Site* shall be operated and maintained such that vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.

Waste Type

19. Only the following types of waste shall be accepted at the *Site*:a. Municipal waste;

Waste Storage

- 20. Outdoor storage is limited to leakproof bins if waste has the potential to produce contaminate runoff and must be covered if waste is susceptible to blowing, at the end of each operating day to prevent wind-blown litter and contaminate runoff.
- 21. With respect to accepting *white goods which contain refrigerants*, the *Owner* shall ensure that:
 - a. all white goods which contain refrigerants which have not been tagged by a

licensed technician to verify that the equipment no longer contains refrigerants, are stored in a separate area in an upright position; and

- b. white goods which contain refrigerants received on-site shall be shipped off-site in order to have the refrigerants removed by a licensed technician in accordance with Ontario Regulation 189; or
- c. the refrigerant is removed on-site from white goods by a licensed technician, in accordance with Ontario Regulation 189, prior to shipping white goods off-site; and
- d. a detailed log of all white goods which contain refrigerants received is maintained. The log shall include the following:
 - i. date of the record;
 - ii. types, quantities and source of white goods which contain refrigerants received;
 - iii. details on removal of refrigerants as required by Ontario Regulation 189; and
 - iv. the quantities and destination of the white goods and/or refrigerants transferred from the Site.

Waste Limits

- 22. No more than 20 tonnes (200 cubic yards) of waste per day shall be accepted at the *Site*.
- 23. No more than 20 tonnes (200 cubic yards) of waste shall be stored or be present on-site at any time. If for any reason waste cannot be transferred from the *Site*, the *Site* must cease accepting waste. Schedule "B" provides a further breakdown of waste allowed to be stored on *Site*.

Service Area

24. Only waste that is generated from within the geographical boundaries of the Picton, Hallowell and Marysburgh Wards within the County of Prince Edwardshall be accepted at the *Site*.

Hours of Operation

- 25. Waste shall only be accepted at the *Site* during the following time periods: 08:00 21:00; Wednesday and Saturday only
- 26. With the prior written approval of the *District Manager*, the time periods may be extended to accommodate seasonal or unusual quantities of waste.

Site Security

27. The *Site* shall be operated and maintained in a secure manner, such that unauthorized persons cannot enter the *Site*.

Waste Inspection

- 28. All waste shall be inspected by *Trained personnel* prior to being accepted at the *Site* to ensure that the waste is of a type approved for acceptance under this *Certificate*.
- 29. In the event that load of waste is refused, a record shall me made in the daily log book of the reason the waste was refused and the origin of the waste, if known.

Site Inspection

- 30. An inspection of the entire *Site* and all equipment on the *Site* shall be conducted each day the *Site* is in operation to ensure that: the *Site* is secure; that the operation of the *Site* is not causing any nuisances; that the operation of the *Site* is not causing any adverse effects on the environment and that the *Site* is being operated in compliance with this *Certificate*. Any deficiencies discovered as a result of the inspection shall be remedied immediately, including temporarily ceasing operations at the *Site* if needed.
- 31. A record of the inspections shall be kept in the daily log book that includes the following information:
 - a. the name and signature of person that conducted the inspection;
 - b. the date and time of the inspection;
 - c. a list of any deficiencies discovered;
 - d. any recommendations for remedial action; and
 - e. the date, time and description of actions taken.

Training Plan

- 32. A training plan shall be developed and maintained for all employees that operate the *Site*. Only *Trained personnel* may operate the *Site* or carry out any activity required under this *Certificate*.
- 33. The *Owner* shall ensure that *Trained personnel* as per Condition 28 are available at all times during the hours of operation of this *Site*. *Trained personnel* shall supervise all transfer or processing of waste material at the *Site*.

Complaint Response

- 34. If at any time, the *Owner* receives complaints regarding the operation of the *site*, the *Owner* shall respond to these complaints according to the following procedure:
 - a. record and number each complaint, either electronically or in a separate log book, and shall include the following information:
 - b. the nature of the complaint,
 - c. if complaint is odour or nuisance related, the weather conditions and wind direction at the time of the complaint;
 - d. the name, address and the telephone number of the complainant (if provided) and

- e. the time and date of the complaint;
- f. the *Owner*, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
- g. the *Owner* shall complete and retain on-site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the recurrence of similar incidents.

Emergency Response Plan

- 35. Within 3 months of the date of this *Certificate*, an Emergency Response Plan for shall be developed and implemented for the Site. The Plan shall include, but is not necessarily limited to:
 - a. emergency response procedures to be undertaken in the event of a spill or process upset, including specific clean up methods for each different type of waste the site is approved to accept;
 - b. a list of equipment and spill clean up materials available in case of an emergency
 - c. notification protocol with names and telephone numbers of persons to be contacted, including persons responsible for the site, the Ministry's District Office and Spills Action Centre, the local Fire Department, the local Municipality, the local Medical Officer of Health, and the Ministry of Labour, and the names and telephone numbers of waste management companies available for emergency response.
- 36. The Emergency Response Plan shall be kept up to date, and a copy shall be retained in a central location on the *Site* and shall be accessible to all staff at all times. Changes to the Emergency Response Plan shall be submitted to the *Director* for approval.
- 37. A copy of the Emergency Response Plan shall be submitted to the to the *Director* for approval with a copy to the *District Manager*, the local Municipality and the Fire Department.
- 38. The equipment, materials and personnel requirements outlined in the Emergency Response Plan shall be immediately available on the *Site* at all times. The equipment shall be kept in a good state of repair and in a fully operational condition.
- 39. All staff that operate the site shall be fully trained in the use of the contingency and emergency response plan, and in the procedures to be employed in the event of an emergency.
- 40. The *Owner* shall immediately take all measures necessary to contain and clean up any spill or leak which may result from the operation of this *Site* and immediately implement the emergency response plan if required.

Closure Plan

- 41. The *Owner* must submit, for approval by the Director, a written Closure Plan for the *Site* six (6) months prior to closure of the Site. This plan must include, as a minimum, a description of the work that will be done to facilitate closure of the Site and a schedule for completion of that work; and
- 42. The *Site* shall be closed in accordance with the approved *Closure Plan*.
- 43. Within 10 days after closure of the *Site*, the Owner shall notify the Director, in writing, that the Site is closed and that the approved Closure Plan has been implemented.

Design and Operation Report

44. The Design and Operations Report shall be retained at the *Site*; kept up to date through periodic revisions; and be available for inspection by *Ministry* staff. Changes to the Design and Operations Report shall be submitted to the *Director* for approval.

Signs

- 45. A sign shall be posted and maintained at the main entrance/exit to the site displaying in a manner that is clear and legible up and contain the following information:
 - a. the name of the *Site* and *Owner*;
 - b. the number of this *Certificate*;
 - c. the name of the operator (if applicable);
 - d. the normal hours of operation;
 - e. the allowable and prohibited waste types;
 - f. a telephone number to which complaints may be directed;
 - g. a twenty-four (24) hour emergency telephone number (if different from above);
 - h. a warning against dumping outside the Site;

Labelling

46. Each designated areas (as identified in item 5, drawing SP1-B in Schedule "A") containing waste storage containers shall have a label or sign with the following information: total number of containers, total volume, type and waste characteristic. The label or sign shall be clearly visible for inspection and record keeping.

Daily Log Book

- 47. A daily log shall be maintained in written format and shall include the following information:
 - a. date;
 - b. types (class and primary characteristic), quantities and source of waste received;
 - c. quantity of unprocessed, processed and residual waste on the *Site*;

- d. quantities and destination of each type of waste shipped from the *Site*;
- e. a record of daily inspections required by this *Certificate*;
- f. a record of any spills or process upsets at the site, the nature of the spill or process upset and the action taken for the clean up or correction of the spill, the time and date of the spill or process upset, and for spills, the time that the *Ministry* and other persons were notified of the spill in fulfilment of the reporting requirements in the *EPA*;
- g. a record of any waste refusals which shall include; amounts, reasons for refusal and actions taken;
- h. and the signature of the *Trained Personnel* conducting the inspection and completing the report.

Annual Report

- 48. By March 31, 2005, and on an annual basis thereafter, a written report shall be prepared for the previous calendar year ("*Annual Report*"). The Annual Report shall be submitted to the *District Manager* on March 31 of each year. The report shall include, at a minimum, the following information:
 - a. a detailed monthly summary of the type and quantity of all incoming and outgoing wastes and the destination of all outgoing wastes;
 - b. any environmental and operational problems, that could negatively impact the environment, encountered during the operation of the *Site* and during the facility inspections and any mitigative actions taken;
 - c. any changes to the Emergency Response Plan and the Design and Operations Report that have been approved by the *Director* since the last *Annual Report*;
 - d. any recommendations to minimize environmental impacts from the operation of the *Site* and to improve *Site* operations and monitoring programs in this regard.

Schedule "A"

This Schedule "A" forms part of Certificate of Approval No. A350104.

- 1. Application for a Provisional Certificate of Approval for a Waste Disposal Site signed by Mr. Ray Ford, Deputy Public Works Engineer, The Corporation of the County of Prince Edward, dated June 29, 2004.
- 2. Design & Operation Plan, County of Prince Edward, Picton Waste Transfer Site, Certificate of Approval No. A350104, dated June 30, 2004.
- 3. Letter from Mr. Ray Ford, Deputy Public Works Engineer, The Corporation of the County of Prince Edward to Richard Saunders (MOE) responding to a request for additional information for the Design & Operation Plan dated October 14, 2004.
- 4. Letter from Mr. Ray Ford, Deputy Public Works Engineer, The Corporation of the County of Prince Edward to Richard Saunders (MOE) regarding public notification dated November 8, 2004.
- Letter from Mr. Ray Ford, Deputy Public Works Engineer, The Corporation of the County of Prince Edward to Richard Saunders (MOE) regarding re-submitted plans, dated November 12, 2004:
 Drawings: SP1-A Existing Conditions, dated November 8, 2004; SP1-B Proposed Conditions, dated November 8, 2004;
 - SP3 Grading and Drainage Plan dated November 8, 2004.

Schedule "B"

This Schedule "B" forms part of Certificate of Approval No. A350104.

- 1. Breakdown of waste stored on site:
 - a. Municipal waste (domestic non-recyclables) stored in 5 X 30 cubic yard containers (15 tonnes);
 - b. Recyclables from Schedule 1 of O.Reg. 101/94 excluding corrugated cardboard stored in 25 X one cubic yard containers;
 - c. Corrugated cardboard stored in 3 X 6 cubic yard containers;
 - d. Scrap metal and white goods stored in one X 5 cubic yard container.

The reasons for the imposition of these terms and conditions are as follows:

REASONS

- 1. The reason for Condition 1 is to clarify that the previously issued *Certificate* of Approval No. A350104 issued on November 1, 1991 as amended on February 10, 1992 are no longer in effect and have been replaced and superseded by the Terms and Conditions stated in this *Certificate*.
- 2. The reason for Conditions 2, 3, 5, 6, 7, 8, 9, 10, 11, 15, and 16 are to clarify the legal rights and responsibilities of the *Owner* and *Operator*.
- 3. The reason for Conditions 4 and 44 are to ensure that the *Site* is operated in accordance with the application and supporting documentation submitted by the Company, and not in a manner which the *Director* has not been asked to consider.
- 4. The reasons for Condition 12 is to ensure that the *Site* is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the *Director* is informed of any changes.
- 5. The reasons for Condition 13 is to restrict potential transfer or encumbrance of the *Site* without the approval of the *Director* and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this *Certificate* of Approval.
- 6. The reason for Condition 14 is to ensure that appropriate Ministry staff have ready access to the *Site* for inspection of facilities, equipment, practices and operations required by the conditions in this *Certificate* of Approval. This condition is supplementary to the powers of entry afforded a *Provincial Officer* pursuant to the *EPA* and *OWRA*.
- 7. The reason for Conditions 17, 18, 20, 21, 30, 38, and 46 are to ensure that the *Site* is operated in a manner which does not result in a nuisance or a hazard to the health and safety of the environment or people.
- 8. The reasons for Conditions 19, 22, 23, and 24 are to specify the approved service area from which waste may be accepted at the Site, the types of waste that may be accepted at the *Site*, the amounts of waste that may be stored at the Site and the maximum rate at which the Site may receive waste based on the Company's application and supporting documentation.
- 9. The reasons for Conditions 25 and 26 are to specify the hours of operation for the *Site* and a mechanism for amendment of the hours of operation, as required.

- 10. The reasons for Condition 27 is to ensure the controlled access and integrity of the *Site* by preventing unauthorized access when the Site is closed and no site attendant is on duty.
- 11. The reason for Conditions 28 and 29 are to ensure that all wastes are properly classified to ensure that they are managed, processed and disposed in accordance with O. Reg. 347, R.R.O. 1990 and in a manner that protects the health and safety of people and the public.
- 12. The reason for Condition 31 is to ensure that detailed records of *Site* inspections are recorded and maintained for inspection and information purposes.
- 13. The reason for Condition 32 and 33 are to ensure that the *Site* is operated by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person.
- 14. The reason for Condition 34 is to ensure that any complaints regarding *Site* operations at the *Site* are responded to in a timely manner.
- 15. The reasons for Conditions 35, 36, 37, 38, 39 and 40 are to ensure that an Emergency Response Plan is developed and maintained at the *Site* and that staff are properly trained in the operation of the equipment used at the *Site* and emergency response procedures.
- 16. The reasons for Condition 41, 42 and 43 are to ensure that the *Site* is closed in accordance with Ministry standards and to protect the health and safety of the public and the environment.
- 17. The reason for Condition 45 is to ensure that users of the *Site* are fully aware of important information and restrictions related to *Site* operations and access under this Certificate of Approval.
- 18. The reasons for Condition 47 is to provide for the proper assessment of effectiveness and efficiency of site design and operation, their effect or relationship to any nuisance or environmental impacts, and the occurrence of any public complaints or concerns. Record keeping is necessary to determine compliance with this *Certificate* of Approval, the *EPA* and its regulations.
- 19. The reasons for Condition 48 is to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.

This Provisional Certificate of Approval revokes and replaces Certificate(s) of Approval No. A350104 issued on November 1, 1991

In accordance with Section 139 of the Environmental Protection Act, R.S.O. 1990, Chapter E-19, as

amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4

<u>AND</u>

The Director Section 39, *Environmental Protection Act* Ministry of Environment and Energy 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 20th day of December, 2004

Ian Parrott, P.Eng. Director Section 39, *Environmental Protection Act*

RS/

c: District Manager, MOE Belleville Bryan Robson, The Corporation of the County of Prince Edward

ÖZ			val	ite.							
/isional Certificate 350102	٨L		Certificate of Appre	.,		uch as brush				ASTE MANAGEMENT BRA	
Prov Branch	APPROV		, this Provisional C • Ontario.			ooû wastes s					
Aanagement E	E OF /	AL SITE	limitations thereof. cton, 1670, Picton			the site: w	RTMENT VVISONMENT	8 1974	AGEMENT BRANCH TON OFFICE 1974		
_{Ontario} ent Waste N		ISPOS/	and subject to the Town of Pi P. 0. Box			leposited at	ر بنيا بن 2000 معالم 0	NY	WASTE MAN KINGS NOV	2	
he Environme	L CERI	STE D	nd the regulations			æ shall be č)th day of	ът , 19 73	
Ministry of t	SIONA	MA	ection Act, 1971 at		•uo	tions: Jlowing wast tumber.			oires on the 30	f Decembe	
	PROVI		citvirolimentai Prot	Landfill	Lot #1298, Town of Pict	ne following condi- couly the for demolition 1			onal Certificate exp	21st day o	
			is issued to:	for the	located	subject to th 1. That and			This Provisic	Dated this	

MOE 14-201

G

%

計

Provisional Certificate No. 361701 OVAL	onal Certificate of Approval			Landfilling must	DF THE ENVISORMENT	AUG 7 1975 BELLEVILLE OFFICE	DIRECTOR, SECTION 3 (a) E.P.A.
Vironment CATE OF APPRIC	ect to the limitations thereof, this Provisi Limitecໍ			t (3) three times yearly. I			aber 1976
VAL CERTIFIC Ministry of the Environment VASTE DISPO	t, 1971 and the regulations and subje Kaladar Planning Mi P. O. Box 280, Tweev, Ontario.	0, ore.		a anu landfilled at least			aber day of <u>Fecen</u>
	ital Protection Act	ling concession l p of Hungerf	J conditions:	to be graced e cells.			cate expires on the day of Septer

Ministry of the Environment

TO: Kaladar Planning Mills Limited, P. O. Box 280, Tweed, Ontario.

You are hereby notified that Provisional Certificate of Approval No. 361701 has been issued to you subject to the conditions outlined therein.

The reasons for the imposition of these conditions are as follows:

To prevent fires

You may by written notice served upon me and the Environmental Appeal Board within 15 days after receipt of this Notice, require a hearing by the Board.

This Notice should be served upon:

The Director, Environmental Appeal Board, Section 3a, E. P. A., 365 Bay Street, AND . Ministry of the Environment, Suite 900, 135 St. Clair Ave. West, Toronto, Ontario. Toronto, Ontario. M5H 2V3 M4V 1P5.

DATED at Toronto this lst day of September

, ₁₉75

Director,

Section Ministry of the Environment.

				All and		
Vinistrv	of the				Long	AGUITAL OF
CON Environme	nont	•	and the second		File	A
Environr	nem			· .	Issue	
					Ke-issue	
Ontario					[up-grade	
RECOMMENDA		GIONAL F	NGINEER			
	submitted by the B	legional Enginee	r to Head Office a	long with the a	application form	and all
supporting inform	nation.	/ · ·				
KAL	ATAR PA	ANNING	MILLES	Ander	2	
PPLICANT			- t			
(DC)	<u>x </u>	10000	E' Z/ Z 4			
WASTE DISPOS	SAL SITE	, ,	WAST	E MANAGEN	MENT SYSTEM	<u>.</u>
OCATED AT		·······	SERVING	1		
het & Cu	acosind 10		- 70	= /130	U.S.	
fic to a fi	./ ~	× ·				
TINE F	HUNGERFER	<u>c!</u>			FILE	
ALE APPLICATION HEOGINED					A	
				7	PROVISION CER	TIPICATE TO EXPIRE
SSUE Certificate of Ap	pproval Pro	visional Certifica	ate of Approval	<u>.</u>	1000 31	176.
ONDITIONS		•	1 1			8
Dispe	Sak Jiz	ĒR	Veed 1190	15 700	<u> </u>	<u> </u>
1	C	1 rd	have to	icen)	12 -	10057
<u>A transmission</u>	<u>, (0,6°00</u>	TECI T	C/II A Comment	<u></u>	\sim	
3 7	mes	Venaky		<u> Lavi</u>	D fice 1	<u>vç Mas</u>
······································				0	+	
-cen	Comphez.	e Cerc	5	6 1200	seal 5	1/20
0		•			N	
	······					
				<u></u>		
	<u>.</u>					
	A., ,	•	· .			
·····					······································	
	· ·					
				• •		
· · · · · · · · · · · · · · · · · · ·	<u></u>					
, ,						
					•	
·			· · · · · · · · · · · · · · · · · · ·		• •	
			· · · · · · · · · · · · · · · · · · ·		•	
ULATE TO REASONS FOR CIRCULATION			······			
JULATE TO REASONS FOR CIRCULATION			······			
ULATE TO REASONS FOR CIRCULATION						
ULATE TO REASONS FOR CIRCULATION)			
ULATE TO REASONS FOR CIRCULATION						
ULATE TO REASONS FOR CIRCULATION	2)			
ULATE TO REASONS FOR CIACULATION	Revoke	Suspend	, Refuse to re-is	sue	I Cert. No.	
ULATE TO REASONS FOR CIRCULATION Refuse Application	? Revoke	Suspend	, Refuse to re-is	suê 🔄	Cert. No	
ULATE TO REASONS FOR CIRCULATION Refuse Application	Revoke	Suspend	, Refuse to re-is	sue	Cert. No.	
ULATE TO REASONS FOR CIACULATION Refuse Application	! Revoke	Suspend	, Refuse to re-is	sue	 Cert. No	· · · · · · · · · · · · · · · · · · ·

N.N.N.N.N.N.	visional Certificate No. 361701	AAL A	Certificate of Approval	Site	OF THE FINISHERT	FLB 11 374 ASTE MANACEMENT BRANCH KINGSTON GRICE	WASTE MANAGEMENT BRANCH	
N.X.X.X.X.X	te Management Branch	SAL SITE	o the limitations thereof, this Provisional sr			eposited at the site: shavings, sawdust and	19 74 DIRECTOR	D To La Sourt
	Ministry of the Environment – Was	WASTE DISPO	ction Act, 1971 and the regulations and subject t Kaladar Planning Mills Box 将280,Tweed,Onta		of Hungerford	ons: The following waste shall be d wood wastes, including wood short lengths of wood.	ires on the <u>31st</u> day of August	
		PROVIS	he Environmental Protec to:	Landfill	Lot 8, Co Township	io the following conditio That only	ovisional Certificate expl is 5th day of	New York
			Under Th is issued	for the	located	subject t	This Pro	MOE 14201

Ministry of the Environment

NOTICE

TO: Kaladar Planning Mills, Box #280, Tweed, Ontario

You are hereby notified that Provisional Certificate of Approval No. **361701** has been issued to you subject to the conditions outlined therein.

The reasons for the imposition of these conditions are as follows:

Your application for the use of this site was limited to these materials.

You may by written notice served upon me and the Environmental Appeal Board within 15 days after receipt of this Notice, require a hearing by the Board.

This Notice should be served upon:

Environmental Appeal Board, 365 Bay Street, AND Suite 300, Toronto, Ontario. M5H 2V3	The Director, Waste Management Branch, Ministry of the Environment, 880 Bay Street, 3rd Floor, Toronto, Ontario. M5S 128.
DATED at Toronto this 5th day of	February , 1974

Ministry of the Environment.

REPLY FROM

WALLE MANAGEMENT BREACH

PROVISIONAL CERTIFICATE OF APPROVAL

`· '

Under The Environmental	Protection Act, 1971 and the	ne regulations and subjec	t to the
limitations thereof, this Provision	nal Certificate of Approval is i	ssued to	••••••
Ka	ladar Planning Mills L	imited,	
Bo	x #280, Tweed, Ontario	•	
for the Landfill			Site
located Lot 8, Concession	10,		• • • • • • • • • • • • • •
Township of Hunge	rforâ		•••••
subject to the following condition	ons		•••••
1. That the site shall	be used for the dispos	al of clean wood was	stes
only.			
			•••••
	·····		••••
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•••••
~			
This Provisional Certificate e	xpires on the31st.day of	December 1	9 <u>73</u>
Dated this 22nd day of	June	73	
Dated thisday of.	·····	, 19	
		. «مرید بر بر این اور ا مرید مرید بر میشوند بر مرید این اور این	
	Director.	Waste Management Branch	
	1 1	-	-210
	(PagetoftPages)		M

Ministry of the Environment

NOTICE

TO: Kaladar Planning Mills Limited, Box #280, Tweed, Ontario,

You are hereby notified that Provisional Certificate of Approval No. has been issued to you subject to the 361701 conditions outlined therein.

The reasons for the imposition of these conditions are as follows:

> Your application for approval of the site as a landfill site was limited to the use of the site for these materials.

You may by written notice served upon me and the Environmental Appeal Board within 15 days after receipt of this Notice, require a hearing by the Board.

This Notice should be served upon:

Environmental Appeal Board, The Director. 365 Bay Street, Waste Management Branch, AND Suite 300. Ministry of the Environment, Toronto, Ontario. 880 Bay Street, 3rd Floor, M5H 2V3 Toronto, Ontario. M5S 128. June

DATED at Toronto this 22nd day of

, 1973 .

Director, Waste Management Branch, Ministry of the Environment.

.

	Ontario		١				
	Ministry of the						
	Environment		Waste M 880 Bay Toronto M5S 128	anageme Street , Ontar	nt Br. , 3rd io,	anch, Floor	,
	SITE RESUME		Date:	April 27	/73		
	Applicant: Keladar Planing Mills	s Itd.		File	No.	361701	
	Location: Lot 8, Conc. X, Hunger	ord Twp.		·····			
	Common Name (if applicable)	n/a	·····				
Ĩ	Municipalities Served:	Kaladar Pla	ning Mill	g			
	Population Served	Тур	e of Sit	e <u>land</u>	(fi)]		
	No. of Inspections: 1	Date of La	ast Insp	ection:		June 2/	72
	Upgrading proceeding under an Ap	proved Proc	gram: Ye	S	No	x	
	Applicant's Attitude: Retarding	the Effor	ts of Br	anch	Adeq	uate	waturat

Current Status of Site:

Location:

Private wood waste disposal site, put or certificate to simplify water sampling. Past policy of Branch has been "bands off" on wood waste disposal. No conditions put on site except that wood wastes only be dumped. Unsatisfactory 10 (1) 5, 17.

Operations:

1,

Unsatisfactory 10 (1) L, T, 9, 13, 14, 15.

Wa e Management Branch

RECOMMENDATION OF REGIONAL ENGINEER NOTE. This form shall be submitted by the Regional Engineer to Head Office along with the application form and all supporting information.

	-			
WASTE DISPOSAL SITE	DEPOSIOL	WASTE M	ANAGEMENT SYSTE	т П
SCATED AF	``````````````````````````````````````	SERVING		
** ************************************		·····		
AND APPEN ANON RECEIVED	· · · ·		F1LE	
	······································		A REPORTOR	
SSUE Certificate of Approval	Provisional Certificat	e of Approval		
0400:085				
• • • • • • • • • • • • • • • • • • •				
· · · · · · · · · · · · · · · · · · ·		• •		· .
	·····			

			······································	
	*1971.000 11			······································
ROUAIE NO				
ASONS FOR CAROLATION				
52kp				
		Defuse to realize the	me Mary Nis	····
		neiuse orte-issue		
<u>.</u>	CARD 23MONED	SIL	nExection	
- 31. 142-142 - 77-3	<i></i>	John Engener	1	

WASTE MANAGEMENT BRANCH

.

×,

FORHEAD	OFFICE USE
FILE	A
ISSUE	
REASSUE	
UP-ORADE	

RECOMMENDATION OF REGIONAL ENGINEER

NOTE: This form shall be submitted by the Regional Engineer to Head Office along with the application form and all supporting information.

	Ste Morosal Sive	x	MARTE BAL	MAGEMENT SYSYEM
	Lot & Connection	10		
LUCATED AT	Two. of Burgerser	• 	SERVING	
	imp. or numgerior	<u>u</u>		
DATE APPLIC	ATION RECEIVED:	n/a		
ISSUE: C	Certificate of Approval	Provisional	Cortificate of Approval	Provisional Cortificate to Expire
			×	On HAY-3 DEC 31/7
CONDITIONS:	:			
() <u>ТНАТ</u>	THE SITE	<u>15 (15</u>	ED FCE 71	IE DISTUSAL OF
CIEH	N. MOGN W	ASTAN	CALIN	
	N	U. 2.7 Gr. 8	<u></u>	
		······		
· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••	·····
·····	······································	, , ,		
	···· · ···· · · · · · · · · · · · · ·			
•••••				
):			
IRCULATE TO);			
CIRCULATE TO	D: CIRCULAȚING:			
IRCULATE TO	D: CIRCULATING:			
IRCULATE TO	D: CIRCULATING:			
EIRCULATE TO	D: CIRCULATING: REFUSE A	>PLICATION:		
IRCULATE TO	D: CIRCULATING: REFUSE AI	PLICATION:		
EIRCULATE TO EASONS FOR REVOKE	D: CIRCULATING: REFUSE AI SUSPENI	PPLICATION:	REFUSE TO RE-ISSUE	(Cert. No)
EIRCULATE TO EASONS FOR REVOKE	D: CIRCULATING: REFUSE AI	PPLICATION:	TEFUSE TO RE-ISSUE	(Cert. No)
EIRCULATE TO EASONS FOR REVOKE	D: CIRCULATING: REFUSE AI SUSPEN	PPLICATION:	REFUSE TO RE-ISSUE	{Cen: No}
REVOKE	D: : CIRCULATING: REFUSE AI : SUSPENI	PPLICATION:	REFUSE TO RE-ISSUE	(Cert. No)
REVOKE	D: CIRCULATING: REFUSE AI	PPLICATION:	TEFUSE TO RE-ISSUE	(Cen. No)
EASONS:	D: : CIRCULATING: : REFUSE AI : SUSPENI	PPLICATION:	πEFUSE TO RE-ISSUE	(Cert. No)
REVOKE	D: CIRCULATING: REFUSE AI SUSPENI	>PLICATION: D	REFUSE TO RE-ISSUE	(Cerr. No)

 \mathbb{V}^{*}
wilding	N.MAGEMENT	DRAMOU
	4	

<u>ц</u>

	Či stati i sta
	Δ
. In which is not	
unit (<u>Va</u>	
2 15 MOS	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O

RECOMMENDATION OF REGIONAL ENGILIER

HOTE: This form shall be adomitted by the Regional Engineer to Head Office transportant and explication form and all supporting information. ____

ությություն հերարվել	NASTE DISPOSAL	. SITE X	une:	oon nagaa suddad u	PUNCHEM
0000000	AT TOL 8. COUC	• X	SPEN	ANG	
LUCATED	Alsirkiski	Thungonidond			
	20.0415414.9 Or.		···· ······	·····	
DATE APP	LICATION RECEIVE	D:	farch 9, 19.3	······································	A
ISSUE:	Certificate of App	roval Provisi	onal Certificate of Ap	proval Province	Say Contificate to Expl
			x	9 Wax	<u>1973</u>
CONDITIC)NS:				
1) si	te to be used fo	r clean wood	wastes only.		
,					
	**********		,		
·····			•••••••••••••••••••••••••••••••••••••••		
	,	•••••		·····	
		••••••••••••••••••••••••			

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	• • • • • • • • • • • • • • • • • • • •				
		~,			
CIRCULA	TE TO:				
	S FOR CHECKILATING	3:			
NEASON	or on one out out and				
NEASON					
REASON				Allan ay a far generation of the source of the	11-21-20) f waan oo bayna amerikaan amerikaan amerikaan amerikaan amerikaan amerikaan amerikaan amerikaan ame
neason	For chrocer and				
REASON	i voke		TION:		
REASON	EVOKE	NEFUSE APPLICA SUSPEND	TION:		
REASON		NEFUSE APPLICA SUSPEND	TION: [REFUSE TO RE-ISS JE	The second secon	
REASON	т ЕVOKE	NEFUSE APPLICA SUSPEND	TION:		
REASON RI REASON	т ЕVOKE [] IS:	NEFUSE APPLICA SUSPEND	TION:	, co.rc ivi	
REASON	т ЕVOKE [] IS:	IEFUSE APPLICA SUSPEND	TION:		· · · · · · · · · · · · · · · · · · ·

William Contract of the second s	i and i a
CUPPOLATIO EPODELATION	
ro au	
APPECATOR FOR APPROVAL	······································
(207-2) ຄຸດ ອາສານາການ ສຸ່ຍນອງດາວສາ ດາ ດ ສຸ່ ດວຍ າວຫ	and the second
EARDER COURTED AL SINE	
A Hastes to be Biggsood of Comprise	
Formatio P4	Westo (office in the network of Commercial)
Caramerolol	
Industrial Viewo	A Constant of the second se
Houlde Light Constraint Waster	
Hezardous Wanto	
Haulad Sewngo	
	•••••••••••••••••••••••••••••••••••••••
and a second	······································
(14)(
Total - Tons/Day	••••••••••••••••••••••••••••••••••••••
Total Day	
Population Served	
A	
3. Distance to Nearce? Watercourse A: Communication of Poteble Water B (Contemporation) Ft.	Ny waliona ana balana oriza ana ana ana ana ana ana ana ana ana a
Distance to Dwelling	Michaniam Horgan and Shi
Distance to Public Road	Above Service
Distance to Cemetery	Profa Surkau
Total Area of Site	
Anticipated Life	· · · · · · · · · · · · · · · · · · ·
Lie new and de bare baily	······································
Andrew War war a provide the set	
	Depth of Victoriality transversional and
	on
5. Proposed Future Lend Use	C. Operating Experimente
ALCON MUCHEN ALCON MUCHEN CONTRACTOR AND A	
	Picial G1 - sac and a second second second
7. The Following Decuments are Attached	COLUMN CONTRACTOR
	S. Authorite Constructs
	CARRIC. Projection (No Objection)
	/ Astaller : Companying 🔲 No Conjectures
	Muthipphie, [] Coyouron [] No Objection Componistics
	Anthority 🔄 Objection 🔲 No Objection
	Citor
	Inspection fitteer is graph to to to be
Prepared by	Regional Engineer String on endeding
	RECOMMISsion News
	<u> </u>
,	······································
DATED	DATED
SIGNED Man J. J. Thomas A. Son	Sierran
Vince Formation 207 Alexand May	

ļ	(1945) Bossarthent of Enorgy and Repairees Manage Waste Management Drenth	та стания с дания такая с дания с с с с с с с с с с с с с с с с с с с
	APPLICATION FOR A CENTRALATE OF ANA FOR A WASTE DISPOSAL SING	i late to out of an arminet to be a first of the best of the second of the second of the best of the second of the
70	THE DEPARTMENT OF ENERGY AND RESOURCES MANAGEMENT 880 Day Street. Torento, Ontorio	4 - 172 - ^C arstel Strough Regional Vient Lanag satur Engineer
x (1)	Under the Wasto Management Act, 1970 and the regulations, this coplica-	
	tion to made by	writer at the mild
	LINER BOY 230, Rovers, Courses,	· · · · · · · · · · · · · · · · · · ·
). (2)	for the Reserved of a Contificate of Approval for a	Poi de arconstanta
	Ly up to the second second second	
∉ (3)	Incode work do coast. X - Contraction of the most	
	*	Pull parasion of Location
(-})	A Certificate of Approval No	Doleto neu inapplicabla
	site was issued	
(ប)	No change in uso, operation, or ownership of the site has occurred since the date of the original application.	
	Dated this,	
	Signature of Applicant	
(G)	The following changes in use, operation or ownership (here occurred	kalaas maa antoplio uble
	since the date of the original application) (are proposed)	n Summer St Jo 221de additional
		General Construction shoots and uttack we appreciately.
	Continued on Attached Sheets	
7. (7)	The site will be operated in accordance with The Waste Menagement Act	
	1970 and the regulations of help the PD on the Hill of the	41 m
	20: 31 Peach C	riame of Operator
_		<u>Address</u>
3	The required supporting information to the application is appended iterato.	
(8)	Notice of this application has been published in the	
(8)	Notice of this application has been published in the	
(8)	Notice of this application has been published in the	
(8) (9)	Notice of this application has been published in the	'ra bo eva , cood If ap plicant la o tha thân 8 hacanaganthy
(8) (9)	Notice of this application has been published in the	 ¹ σ bo constructed if applicant is other unar a non-negative ¹ boo naces carbonizing 1 to 0 on Lock of Roberts support emich is to bo estation of maphicant.
(8) (9)	Notice of this application has been published in the	To be completed if epolloant is other than a managenity wonder each contrast to 9 on Lock of last completed chich is to 55 relation by replaced.
(8) (9)	Notice of this application has been published in the	To bo constructed if applicant la obliga tada a lananegoniay buo hosto ca se od toa 1 to 9 on Lock of laot costo spand conten is to bo retained by opplecont.

.

For Head Office Use			
0	R		
2nd Sheet	·		
#			

PROVISIONAL CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL SITE

Under The Environmental Protection Act, 1971 and the regulations and subject to the
limitations thereof, this Provisional Certificate of Approval is issued to
Kaladar Planing Mills Limited,
Box #280, Tweed, Ontario
for the Landfill Site
locatedLot 8, Concession 10,
Township of Hungerford
subject to the following conditions
1. That the site is used for the disposal of clean wood wastes only.
OF THE ENVIRONMENT SUITATE JUL 13. 1979 WASTE MANACEMENT BRANCH KINGSTON OFFICE
This Provisional Certificate expires on the <u>31st</u> day of <u>Max Max 19.73</u>
Dated this7thday ofJນໄy
Djrector, Waste Management Branch (Page. 1of. 1(Pages)

FORM WM 308-2-72

Township of Hungerford

JAMES KINLIN, CLERK-TREASURER P. O. BOX 568 TWEED - ONTARIO

March 8,1972

Department Of The Environment,

Waste Management Branch,

797 Princess Street,

Kingston, Ont.

Mr. J.W. Tooley,

Inspector, Mideastern Region

Dear Mr. Tooley;

This is to certify that " The Dump Disposal Site Located At Lot 8, Concession 10, Township Of Hungerford For Which An Application For Approval Is Being Made By Kaladar Planing Mills Limited Does Not Contravene Any Of The By-Laws Of The Municipality Of Hungerford"

James Kenlin Jerk Township Of Hungerford

Department of Energy and Resources Management

PROVISIONAL CERTIFICATE OF APPROVAL FOR A WASTE DISPOSAL SITE 26 1971

DIMENT DRANCH

Certificate No. 360102

Under The Waste Management Act, 1970 and the regulations and subject to the limita-
tions thereof, this Provisional Certificate of Approval is issued to
The Corporation of the City of Belleville
City Hall
Belleville, Ontario
for theSite
located Original Township Lots 2 and 3, Concession 1,
City of Belleville
subject to the following conditions
1. Site to be closed in a manner acceptable to this Branch by the expiry date.
This Provisional Certificate expires on the15th
1971
Dated this

(1)	DATE APPLICATION RECEIVED: February	r 3, 1971	File: A <u>3601</u>
(2)	APPLICANT: Corporation of th	ne City of Belleville	
(3)	ISSUE: Certificate of Approval		
	Provisional Certificate of Approval		X
(4)	TIME: Provisional Certificate to Expire inMA	1.7, 1.971months-fi	om-clate-of-issue,
(5)	CONDITIONS OF ISSUE:	,	
	I) SITE TO BE CLOSED IN A	MANNER ACCEP	TARE TO THIS
	TRANCH ITY THE EXP	VRY DATE.	
	[/	
(
101	DO NOT ISSUE.		
(0)	DO NOT 1330E.	REVOKE (Cert No	
(7)	REASONS FOR (6)	nevore four nominant	, L

\bigcirc			
/0)	DEEED. OROLUATE TO:		
(8)	DEFER: CIRCOLATE TO	***************************************	
	FOR:	•••••••	
			M. 1 .
	FOR 5h	12	Mudoo-
(9)	DATE: / CD		Regional Engineer
1095	RAMON SATISFACTORY. SEE LETTER	OF DEC. 23, 1970	FROM J.R. REYNOLDS
(CITY MENDGER.)		×.
	T		

(1) Under the Waste Management Act, 1970 and the regulations, this applica-	
	tion is made by The Corporation of the City of Belleville	Owner of Facility
	City Hall, Belleville, Ontario	Address
(2) for the XVCCCENNER of a Certificate of Approval for a	Delete item inapplicable
	Landfilling	Type of Disposal
(3) located	Full particulars of Location
(4	A Certificate of Approval No	Delete item inapplicable
	site was issued19	
(5)	No change in use, operation, or ownership of the site has occurred since the date of the original application.	
	Dated this19	
	N . A . Signature of Applicant	
(6)	The following changes in use, operation or ownership (have occurred since the date of the original application) (are proposed)	Delete item inapplicable
	N . A .	ll necessary, provide additional details on separate sheets and attach to application.
	Continued on Attached Sheets	
(7)	The site will be operated in accordance with The Waste Management Act,	
	1970 and the regulations by <u>CORPORATION</u> OF THE SHY ST FEED	WILLE Name of Operator
	CITYHALS, TRECEVILLE, ONT	Address
	The required supporting information to the application is appended hereto.	
(8)	Notice of this application has been published in the $N \cdot A \cdot$	
	onand	
	and a copy of the notice is attached.	
(9)	A certificate that the site does not contravene any of the by-laws of the municipality is attached.	To be completed if applicant is other than a municipality
		See notes on sections 1 to 9 on back of last copy (pink) which is to be retained by Applicent.
	Dated this26thday ofNovember19.70	
	1 , Paleral,	
	Signature of Applicant (City of	No Carbon Paper Required
	Carpy Crow	1. /

for the Corporation of the City of Belleville

Hauled Sewage	4. Maximum Depth of Excavation Below Surface
Total Area of SiteAcres Anticipated LifeYears General Description of Site Site is nintting by of Ouinte	From Surface From Surface Ft. Ft. Depth of Watertable Below Surface
5. Proposed Future Land Use	6. Operating Equipment Hours of Operation.
7. The Following Documents are Attached	FOR DEPARTIVENTAL USE 8. Authorities Consulted: Health Unit Objection Objection No Objection O.W.R.C. Objection A.M.B. Objection Municipality Objection No Objection No Objection Municipality Objection No Objection No Objection Municipality Objection No Objection No Objection Conservation No Objection Authority Objection Inspection Record Forms Attached Inspection Record Forms Attached Regional Engineer's Report Attached Inspection SEE f-CMIN_2-II DATED FER.5/1/1 SIGNED Juditation

in the City of Belleville, containing an area of 35.24 acres, be the same more or less, and which said Vater Lot may be more particularly described as follows:

PREAISING that the north limit of Dundas Street according to a Plan filed in the Registry Office for the said County as Number 9 has an astronomic bearing of N 49° 46' E derived from observation and relating all bearings herein, thereto;

CONMENCING at the north-west corner of the said Mater Lot, being the southeast corner of Lot 77 according to H. Carre's Plan filed in the said Registry Office as Number 291, being distant 671.5 feet measured S 13° 05' D along the east limit of said Lot 77 from a point in the west limit of Dary Street according to a Plan filed in the said Registry Office as Number 14, distant 465.06 feet measured S 16° 02' E along the said west limit of lary Street from a survey post planted in the said north limit of Dundas Street;

THENCE, southerly and south-westerly along the high water mark of the Bay of Quinte, according to a Plan of survey dated July 28, 1883, by M. Drewry, P.L.S., attached to Registered Instrument Number D-540 (Grown Grant to the City of Belleville) to the east limit of the Bay Bridge Road, formerly the King's Wighway Number 14 as acquired by Registered Instrument Number 4066;

THENCE, S 8° 05' E, along the said cast limit of Day Dridge Road, 360 feet, more or less, to the high water tork of an island in the said Bay of Quinte known as "Dushy Island" and being Lot 75 according to a Plan by 4. Lurney filed in the said Registry Office as Memorial Clan Number 0-358;

THENCE, South-easterly along the said high vatar mark of "Bushy Island" to a line drawn N 80° 23' E from a point in the said east limit of Bay Bridge Road distant 2181.54 feet measured S 8° 05' E thereon from its intersection with the south limit of Lot 4 according to said Registered Plan Fumber 9;

THENCE, N 80° 23' E, along said line, 1495 feet, more or less, to a point being distant 1640.0 feet measured easterly thereon from the said east limit of Pay Bridge Road;

TELC., N 23º 12' W, 708.6 feet;

THINCE, N 69° 57' 30" N, 497.5 feet;

TILEUE, N 13° 57' 30" V, 823.8 feet, more or less, to a line drawn N 76° 02' 30" E from the point of commencement;

THENCL, S 76° 02' 30" V, 258.5 feet to the said point of commencement.

The Water Lot as herein described being shown outlined in red on a blan and field notes of survey dated March 21, 1963, signed by T.S. Ranson, Ontario Land Surveyor, of record in the Department of Lands and Forests, Ontario, a duplicate of which plan and field notes is attached to and forms part of these Letters Patent.

>(Spl.)..T.S..Bausom...... Onterio Land Surveyor

Sediment sample results for contaminants taken at sampling locations near the closed Zwick's Island landfill site, Belleville Ontario.

		Table 1 Sediment					
Parameter	Units	Condition Standards	SED-SW4	SED1	200610602	SED2	2007
Aluminum	µg/g				21000		15700
Antimony	µg/g						2.5
Arsenic	µg/g	6			7.1		2.5
Barium	µg/g			9.8	190	6.5	185
Berylium	µg/g				0.8		0.6
Bismuth	µg/g						2.5
Cadmium	µg/g	0.6		0.6	1.5	0.5	1
Calcium	µg/g				25000		18300
Chromium	µg/g	26		24	61	47	54.2
Cobalt	µg/g	50			11		10.1
Copper	µg/g	16		30	45	21	48
Iron	µg/g			17600	27000	12300	25400
Lead	µg/g	31		<0.4	81	<0.4	74.3
Lithium	µg/g						13.7
Magnesium	µg/g				7600		7180
Manganese	µg/g			351	1100	468	1102
Mercury	µg/g	0.2			0.81		0.45
Molybdenum	µg/g				0.5		0.5
Nickel	µg/g	16			24		25.5
Niobium	µg/g						2.5
Potassium	µg/g						1100
selenium	µg/g				1.5		
Silver	µg/g	0.5					0.7
Sodium	µg/g						355
Strontium	µg/g				64		52.7
Tin	µg/g						10
Titanium	µg/g				670		527
Tungsten	µg/g						10
Vanadium	µg/g				40		27.5
Yttrium	µg/g						18.8
Zinc	µg/g	120		150	190	121	208
ТОС	µg/g				110000		108000
tkn	µg/g				10000		
TOC%	µg/g						10.8
TN	µg/g						8600
TP	µg/g				1500		1600
Fluoranthene	µg/g	0.75					
Phenanthrene	µg/g	0.56					
PAH	µg/g						
PCB	µg/g	0.07			0.18		
Indeno(1,2,3-cd)pyrene	µg/g	0.2			0.2		

Acenaphtrene	µg/g		<0.0001	<0.001		0.008	
acenaphthylene	µg/g		0.0003	0.0072		0.007	
Anthracene	µg/g		0.0002	0.689		0.23	
Benzo(a)anthracene	µg/g	0.32	<0.0001	0.0722		0.026	
Benzo(a)pyrene	µg/g	0.37	<0.0001	<0.001		<0.001	
Benzo(b)fluoranthene	µg/g		0.001	<0.001		0.004	
Benzo(g,hi)perylene	µg/g	0.17	<0.0001	<0.001		<0.001	
Benzo(k)fluoanthene	µg/g	0.24	0.0008	<0.001		0.003	
chrysene	µg/g	0.34	<0.0001	0.14		0.057	
Dibenzo(a,h)anthracene	µg/g	0.06	<0.0001	<0.001		<0.001	
Fluoranthene	µg/g	0.75	0.00062	1.01		0.266	
Fluorene	µg/g	0.19	<0.0001	0.0344		0.025	
Indeno(1,2,3-c,d)pyrene	µg/g	0.2	<0.0001	<0.001	0.2	<0.001	
Napthalene	µg/g		<0.00005	0.0038		0.004	
Phenanthrene	µg/g	0.56	0.00026	0.645		0.216	
Pyrene	µg/g	0.49	0.00051	0.705		0.167	
Total PAH	µg/g		0.0037	3.307	1.8	1.012	
Total PCB	µg/g	0.07			0.18		

Appendix C

* red text denotes values higher than the Table 1 standard

Data Source: Table 4 and Table 22 cited in Biberhofer and Dunnett, 2006. Summary of recent sediment investigations for the Bay of Quinte, Lake Ontario. Environment Canada. National Water Research Institute. NWRI 06-229, September 2006.

Sediment sample results for contaminants taken at sampling locations near the closed Delhi Park Waste Disposal Site, Picton Ontario.

		Table 1 Sediment		
Parameter	Units	Condition Standards	2031	EHD-6
Aluminum	µg/g		19500	37783
Antimony	µg/g		2.5	
Arsenic	µg/g	6	9.49	<5
Barium	µg/g		181	389
Berylium	µg/g		0.774	0.3
Bismuth	µg/g		2.5	
Cadmium	µg/g	0.6	1	1.3
Calcium	µg/g		15400	83285
Chromium	µg/g	26	49.1	52
Cobalt	µg/g	50	15.8	5
Copper	µg/g	16	45.1	215
Iron	µg/g		27200	18949
Lead	µg/g	31	73	89
Lithium	µg/g		17.2	6.9
Magnesium	µg/g		9710	7684
Managanese	µg/g		763	240
Mercury	µg/g	0.2	0.167	0.647
Molybdenum	µg/g		0.5	2
Nickel	µg/g	16	46.1	9
Niobium	µg/g		2.5	
Potassium	µg/g		2500	1301
Silver	µg/g	0.5	0.25	11.3
Sodium	µg/g		535	3706
Strontium	µg/g		61.4	218
Tin	µg/g		10	14
Titanium	µg/g		816	241
Tungsten	µg/g		10	
Vanadium	µg/g		35.4	28
Yttrium	µg/g		16.8	6.4
Zinc	µg/g	120	179	504
TOC	µg/g		98800	
TOC%	µg/g		9.88	2
TN	µg/g		12500	
TP	µg/g		1150	
Fluoranthene	µg/g	0.75		1.11
Phenanthrene	μg/g	0.56		0.852
PAH	μg/g			1.962
PCB	µg/g	0.07		0.11

* red text denotes values higher than th

Data Source: Table 7, 11 and 27 cited in Biberhofer and Dunnett, 2006. Summary of recent sediment investigations for the Bay of Quinte, Lake Ontario. Environment Canada. National Water Research Institute. NWRI 06-229, September 2006.

	CANT	MW3	MW4	MXXII	ww	MWS	WW9	01000	ITMM	MW12	MW13	MW14	MW15	MW16A	MW168	MWJZA	O.Reg. S11/09 (µg/1) coarse grain	() Red () ()(0) (M(/)) control ()(0) ()(0)
METALS			and the second	Exactly 1 an	State State		South States	「「「「	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		State Par	設立と記録	Brane Sa	A CONTRACTOR	のないの		
antimony																	nmar	1.00
arsenic																	nngT	
barium																	00024	
baran									-								andr.	
cədmium																	5	
coppet									-	-							00	
lead																	0.40	
mercury																	1000	
molybdenum																-	une .	
nickel								-	-								5 2	
selenum										-							5	
silver														-			200	
zinc			The second second		and a service of	a North States		Section of the	A STREET	1 Statistics	1.000	ALC: NOT THE OWNER OF THE OWNER	ALCHORAGE AND	あいいまたので	Strate Strate	TO HOUSE	and the second second	Three works
PAHs	N. Contraction	のないという	242 N. 1942	Town of the	1000000000	1121-121	120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONT OF	AND TO A	122.74	The stands of	AND DESCRIPTION OF THE PARTY OF	And the state of the state of the	Co.d	In Linderty in Str	APPENDING NO.	600	
acenaphthylene																	1.4	
anthracene																		
benzo(a)anthracene									-								er	
benzo(b)fluoranthene																-	c/n	
benzo(a)pyrene										-							tero	
benzo(g,h,i)perviene														-				
benzo(k)fluoranthene							-										0.7	
chrysene																-	0.4	
dibenzo(a,h)anthracene																-	11	
fluoranthene																	290	
																	0.2	0
ohenanthrene							-										380	
pyrene																	5.7	
bis(2-ethylhexyl)phthalate								-									30	
HYDROCARBONS	State 12 State	NAL STREET	日本では	States Same	and the second second	SHORE AND	ALCONA D	COLUMN ST	Test test	THE SHEET	TELEVILLE I	ACCESSION OF	al constant	and the second second	and a second	S.MORT	and a second	
PHC F1																	4,20	
PHC F2								1000		MC/C	199							
PHC F3					1000			10000			COOL T						and the second	

PHC F4

Non-Potable within 30m of a waterbody 511/05 Non-Potable medium and fine grain 511/05

OP ARX

TABLE A: SOIL CHEMISTRY SUMMARY

	「「「「「「「」」」	「「「「「「「」」」」		20	04 00 00000		ALL MANUTANIA	のないないのである	のないないのであるという	のないであるというないであるというと	「「ない」であるという	2000	And a state of the	Contraction of the second			
	RH4-01	1045-01	80.548	BH6-03	BH2 04	8149-03	10.0198	800.06	BH14-S02	BH15-S01	BH16-S02	BH16-S03	3H17-S01	08-501	08-502	O.Reg. 511/09	O.Reg. 511/09
	0-0.6	0.8-1,4	2.9 - 3/5	1.8-2.4	27.2.4	2.4 - 2.9	0.0.6	3.1 - 3.7	0.6-1.3	0-0.6	0.7-1.1	1.1-1.5	0-0.6	0-0.05	0.05-0.25	(µg/L) coarse	Brain as record 1/841
																Contraction of the	Constant Constant
MEIAO		Contraction of the owner of the owner	1	4	S	N	2	4			4	-	3			1.3	C.1
antimony			and the second se		Contraction of the		Contraction of the	and the second			20					18	18
arsenic												100	652		265	220	205
barium								-					Construction of the local division of the lo		Concentration of the local division of the l	N/A or 36	1.5 or 126
boron											15 8		3.6		1.4	1.2	12
cadmium			3.4	6.6		9.81		1.1								8	144
copper			110			1920	122				east.		-	100	101	110	
lead			681		1890	946		12.5	-		928		144	100	000 0		
mercury		E.0								1	0.45		0.391	0.558	00/10	17.0	
molybdenum			8000		3	6					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					3	
nickel											2					15	2.4
selenium											30		14			50	20
silver	4					A second second second		- Alexandra			6.0		1 4 1	225	503	200	340
zinc			375	and a second second second	294	115.65	ALC: NUMBER OF TAXA	1 214	State and the state	STATISTICS STATES	AC. 14	and the state		-00		Source in the second	South and the second
PAHS	A STATE		State State		State of the state	Contraction of the local distance of the loc	ALC: NO THE	Constant of the local distance of the local	A CONTRACTOR OF	0 100	Contraction of the	STATE OF CONTRACTOR	ACCOUNTS AND	COLUMN TO AND ADDRESS OF	and a second second	0.072	85
acenaphthene		•								Sound the				1	-	0.093	51.0
acenaphtnylene									0 31		4.12		0.26			0.22	0.67
anthracene									44 4		22.2		1 06	0.550	0.643	0.36	36.0
benzo(a)anthracene									0.24		30.8		-	0.759	0.808	0.47	0.78
benzo(b)fluoranthene									THE REAL PROPERTY OF		20 C		1 02	0.636	6 774	0.3	0.2
benzo(a)pyrene												6 42	0.0			0.68	5.5
benzo(g,h,i)pervlene											1014	Ch.0	0.0			0.49	0.78
benzo(k)fluoranthene											64.0		0.59			0.10	4
chrysene											1.6.1		-				
dibenzo(a,h)anthracene											11.0		0.11	10101	0.203	1.0	
fluoranthene									1.17		30.6		1.33		1.4.5	0.69	con
fluorene																61.0	
indeno(1,2,3-cd)pyrene											36,6		1.52	0.570	0.673	0.23	0.38
phenanthrene									1.07		17.4		1.42		2.03	0.69	12
pyrene											26.5				1.35	1	18
PHG		Contraction of the second				No. of the local division of the local divis			Supervised in the	and a second	A CONTRACTOR	No of Contraction	and a company	and	Statistics.	and the second state	
PHC F3									200		1000		230	1/0		5 20	
PHC F4					-				400		25100	04	DORT	130		00	1001

OPAA,

Non-Potable within 30m of a waterbody 511/09

	(0.10 19 0.47 (0.10 0.12 0.13 8.5 14 3.3 (0.10 4.62 1.38 94 282 136 89 170 83 143 74 80 23 37 46 35 40 13 41 7.9 7.5 6.3 30 11.5 3.8 2.7 10.8 2.8 7.1 2.0	(1.0 143 (1.0 (1.0 (1.0 3.0 (2 (1.0 (1.0 2.0 B1 131 718 29 140 125 142 166 36 7.3 250 (1 (1 5.0 (1 0.1 1.1 (1 5.0 (1 1.0 29 28 9 309 9 25 (2 (2 59 5 8.82 0.54 10.0 29 28 9 309 9 25 (2 (2 59 5 500	LTS 	412 1150 1120 485 2580 550 460 360 13 13 13 151 12.5 11 10 18.5 20.0 7.1 5.4 10.0 7.6 5.5 10.4 11.3 7.15 6.45 6.95 7.00 6.9 6.9 5.9 7.75	TABLE 5: FIELD NONITORING AND INORGANIC CHEMISTRY RESULTS DELNI LANDFILL, PICTON SROUMDWATER SAMPLES SROUMDWATER SAMPLES NETER METER SAMPLE SAMA SAMA
1 1	.10 4.62 1.38 5 0	.0 3 8.82 0.54 10.0 . 500	23 23 0.05	1111	SURFACE ONT. BRINKIN ITER SAMPLES NATER OBJECTIVES 12 SNJ SN4 (REVISED 198
200-1200	1.38 100-3,00 100-1,50 200-1,00 200-1,20	2.0 250 300-3,00 0.54 10.0 0.1-10 500 10-1,00	0.3 0.05 500-10.00	T::::	ONT. DRINKING RANGES IN LEAC Nater From Sanitary Objectives (Freeze & Cher Su4 (Revised 1983)

· · · · · · ·

۰.

and the second second

TABLE 6: Organic Chemistry Results, Delhi Park Landfill, Picton

	P19
1.1.2	62-5
SWI	
SW3	2
DWO *	
MDL **	

VOLATILE PRIORITY POLLUANI (ug/1)

· · · ·					
		1	1	140	er Aromatic Compounds
•		t	,	7.8	liene
		1	,	77	xyiene
•		•	•	040	and a last one challe
- 200		trace	,		h orof horomethane
- 2000			,	5.2	1 - Thicklonooth
4 10	3.	7.6	,	; _	ach lorethy lene
•			•	12	ivenzene
,		12	,	,	
•		,	,	7.9	
- 7		,	1	2.8	Dicklordetny lene
'		1.3	,	,	
- 350		3.5	,		-Dichlorobenzene
- 60***		, , ,	I	2 2	broform
- 10		r	,	4.5 c.0	orobenzene

URITY POLLUTANTS (ug/L)

ACIDIC PRIORITY POLLUTANTS (ug/L)

Pheno 1
73
n/a
n/a
2

NOTE: Only those compounds with detectable concentrations are included in the table. A complete listing of the EPA 625 and 624 compounds analyzed are included in Appendix E.

Drinking Water Objective (WESA, 1988)

* Method Detection Limit

*** **US EPA Limit**

KGEN0016517

Table 2 (continued) Groundwater Analysis - July 28 and August 5, 2010 Petroleum Hydrocarbons, VOCs, Metals, PAHs Wellington Community Centre, Wellington, Ontario

Sample Date June 28, 2010 CRITERIA UNITS MDL PARAMETER MW-1 MW-2 MW-3 BW-1 Table 3* ODWQS^ METALS Antimony µg/L 20,000 0.5 6 (IMAC) 0.8 < 0.5 < 0.5 < 5 25 (IMAC) Arsenic µg/L 1,900 1 5 2 5 < 10 29,000 Barlum µg/L 5 1000 (MAC) 330 480 580 240 Bervilium µg/L 0.5 67 < 0.5 < 0.5 < 0.5 < 5 Boron µg/L 10 45,000 5000 (IMAC) 170 360 520 840 Cadmium µg/L 0.1 2.7 5 (IMAC) 0.1 0.1 0.1 <1 Chromium μg/L 5 810 50 (MAC) < 5 < 5 < 5 < 50 Chromium (VI) 140 μg/L 5 -< 5 < 5 < 5 < 5 μg/L 0.5 66 Cobalt 1.3 < 0.5 < 0.5 < 5 µg/L 87 1,000 (AO) Copper 1 <1 1 <1 < 10 µg/L 25 Lead 0.5 10 (MAC) 0.6 < 0.5 < 0.5 < 5 Mercury µg/L 0.1 (2.8) 0.29 1 (MAC) 4.4 a sais 1.9 < 0.1 9,200 Molybdenum µg/L 1 2 2 7 100 Nickel µg/L 1 490 2 < 1 1 < 10 Selenium µg/L 2 63 10 (MAC) < 2 <2 < 2 < 20 Silver µg/L 0.1 1.5 < 0.1 < 0.1 < 0.1 < 1 µg/L 100 490,000 Sodium 82,000 20,000 180,000 130,000 1,800,000 µg/L 0.05 Thallium 510 < 0.05 < 0.05 < 0.05 < 0.5 μg/L 250 Vanadlum 1 <1 < 1 < 1 < 10 µg/L 5 1,100 5000 (AO) 49 < 5 Zinc < 5 < 50 POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) (1,700) 600 Acenaphthene µg/L 0.5 1.1 < 0.5 < 0.5 < 0.05 µg/L Acenaphthylene 0.5 1.8 _ 0.7 < 0.5 < 0.05 Anthracene µg/L 0.5 2.4 -, (1.1 < 0.05 Benzo(a)anthracene µg/L 0.5 4.7 3,9 < 0.05 µg/L 0.1 0.81 0.01 (MAC) Benzo(a)pyrene \$.6 2.3 7.9 0.01 Benzo(b/j)fluoranthene µg/L 0.5 0.75 < 0.05 Benzo(g,h,i)perylene µg/L 1 0.2 < 0.1 µg/L Benzo(k)fluoranthene 0.5 0.4 -< 0.05 Chrysene µg/L 20 1 -< 10 < 5 < 20 < 0.05 Dibenzo(a,h)anthracene µg/L 1 0.52 < 1 < 0.1 130 Fluoranthene 0.5 µg/L. -13 6.2 26 < 0.05 Fluorene µg/L 0.5 400 1.3 0.7 1.7 < 0.05 indeno(1,2,3-cd)pyrene µg/L 0.2 1 < 0.1 1-Methyinaphthalene µg/L 0.5 < 0.5 < 0.5 0.7 -0.32 1,800** 2-Methylnaphthalene μg/L 0.5 < 0.5 < 0.5 0.7 0.48 (6,400) 1,400 Naphthalene µg/L 0.5 1.1 0.7 1.4 0.35 ٠ P<u>henanthren</u>e µg/L 0.3 580 8.7 4.9 13 0.07 Pyrene µg/L 0.5 68 10 4.9 19 < 0.05 POLYCHLORINATED BIPHENOLS (PCBs) Total PCB 0.05 μg/L (15) 7.8 3 (MAC) < 0.05 < 0.05 < 0.05 < 0.5

. = MOE's Soil, Ground Water and Sediment Standards under Part XV.1 of the Environmental Protection Act, July 27, 2009 (Table 3) - All types of Property Use

A = Ontario Regulation 169/03, Ontario Drinking Water Quality Standards made under the Safe Drinking Water Act, 2002

= Concentration equals or exceeds Table 3 criteria

E = Concentration equals or exceeds ODWQS

= Concentration equals or exceeds Table 3 criteria and ODWOS

MDL = Molhod Detection Limit (lowest level of the parameter that can be quantitified with confidence)

t 20,000 ug/L is the recommanded warning level for sodium for persons on sodium restricted diets

Not applicable

() Standard in bracket applies to medium and fine textured soits

Page 2 of 2

Table 2 Groundwater Analysis - July 28 and August 5, 2010 Petroleum Hydrocarbons, VOCs, Metals, PAHs Wellington Community Centre, Wellington, Ontario

KGEN0016517 ******* Sample Date July 28, 2010 CRITERIA UNITS MDL MW-1 MW-2 MW-3 **BW-1** PARAMETER ODWQS^ Table 3* TOTAL PETROLEUM HYDROCARBONS 750 ~ < 100 < 100 < 100 330 PHC F1 (C6-C10 µg/L 100 ~ PHC F2 (C10-C16 Hydrocarbons) µg/L 100 150 < 100 < 100 < 100 ٨٨ 1.00 100 500 150 < 100 PHC F3 (C18-C34 Hydrocarbons) ug/L ٨٨ PHC F4 (C34-C50 Hydrocarbons) 100 500 < 100 < 100 µg/L VOLATILE ORGANIC COMPOUNDS (VOCs) 630 10 130.000 < 10 11 µg/L 11 Acetone 0.1 (430) 44 5 (MAC) 0.2 0.3 0.2 270 Benzene µg/L 85,000 100 (MAC) < 0,1 < 5 Bromodichloromethane 0.1 < 0.1 < 0.1 µg/L (770) 380 100 (MAC) < <u>0.2</u> < 10 µg/L 0.2 < 0.2 < 0.2 Bromoform < 30 0.5 (56) 5.6 < 0.5 < 0.5 < 0.5 Bromomethane µg/L 5 (MAC) < 5 (8.4) 0.79 < 0.1 < 0.1 < 0.1 Carbon Tetrachloride µg/L 0.1 80 (MAC) < 5 µg/L 0.1 630 < 0.1 < 0.1 < 0.1 Chlorobenzene < 5 100 (MAC) μg/L 0.1 (22) 2.4 < 0.1 < 0.1 < 0.1 Chloroform < 10 0.2 82,000 100 (MAC) < 0.2 < 0.2 < 0.2 Dibromochloromethane µg/L < 10 μg/L 0.2 (9,600) 4,600 200 (MAC) < 0.2 < 0.2 < 0.2 1,2-Dichlorobenzene ug/L 0.2 9,600 < 0.2 < 0.2 < 0.2 < 10 1,3-Dichlorobenzene 0.2 5 (MAC) < 10 μg/L (87) 8 < 0.2 0.2 < 0.2 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12) < 30 0.5 4,400 < 0.5 < 0.5 < 0.5 hð\r (3,100) 320 < 0.1 < 5 < 0.1 1,1-Dichloroethane µg/L 0.1 < 0.1 µg/L 5 (IMAC) < 0.2 < 10 0.2 (12) 1.6 < 0.2 < 0.2 1,2-Dichloroethane 14 (MAC) (17) 1.6 < 5 0.1 < 0.1 < 0.1 1.1-Dichloroethylene µg/L < 0.1 0.1 (17) 1.6 < 0.1 0.1 < 0.1 < 5 µg/L c-1,2-Dichloroethylene < 5 µg/L 0.1 (17) 1.6 . < 0.1 < 0.1 < 0.1t-1,2-Dichloroethylene µg/L 0.1 (140) 16 < 0.1 < 0.1 < 0.1 < 5 1,2-Dichloropropane < 10 < 0.2 < 0.2 c-1,3-Dichtoropropene µg/L 0.2 (45) 5.2 . < 0.2 0.2 (45) 5.2 < 0.2 < 0.2 < 0.2 < 10 µg/L t-1,3-Dichloropropene < 5 < 0.1 2.4 (AO) < 0,1 µg/L 0.1 2,300 < 0.1 Ethylbenzene < 10 0.2 (0.83) 0.25 < 0.2 < 0.2 < 0.2 Ethylene Dibromide μg/L < 30 µg/L 0.5 (520) 51 < 0.5 < 0.5 < 0.5 Hexane Methylene Chloride 0.5 (5,500) 610 50 (MAC) < 0.5 < 0.5 < 0.5 < 30 μg/L < 300 µg/L 5 (580,000) 140,000 < 5 < 5 < 5 Methyl Isobutyl Ketone μg/L 5 (1.5*10⁹) 4.7*10⁵ < 300 -< 5 < 5 < 5 Methyl Ethyl Ketone Methyl t-Butyl Ether (MTBE) μg/ί.. 0.2 (1,400) 190 -< 0.2 < 0.2 < 0.2 < 10 (9,100) 1,300 < 0.2 0.2 < 10 µg/L -< 0.2 < 0.2 Styrene 1,1,1,2-Tetrachloroethane < 5 0.1 (28) 3.4 < 0.1 < 0.1 < 0.1 µg/L < 10 1,1,2,2-Tetrachloroethane µg/L 0.2 (15) 3.2 < 0.2 < 0.2 < 0.2 30 (MAC) < 5 0.1 (17) 1.6 < 0.1 < 0.1 < 0.1 Tetrachloroethylene µg/L 260 0.2 hð\l" 0.2 18,000 24 (AO) < 0.2 0.3 Toluene 0.1 (6,700) 640 < 0.1 < 5 < 0.1 < 0.1 1,1,1-Trichloroelhane hđ\r -1,1,2-Trichloroethane µg/L 0.2 (30) 4.7 < 0.2 < 0.2 < 0.2 < 10 < 5 (17) 1.8 5 (MAC) < 0.1 < 0.1 < 0.1 µg/L 0.1 Trichloroethylene < 0.2 < 10 Trichlorofluoromethane (FREON 11) µg/L 0.2 2.500 < 0.2 < 0.2 0.2 (1.7)0.52 (MAC) < 0.2 < 0.2 < 0.2 < 5 Vinyl Chloride µg/L 48 mp-Xylenes μg/L 0,1 0.1 0.2 0.2 0.2 48 0.1 < 0.1 < 0.1 μg/L o-Xylene 4,200 300 (AO) 0.2 0.4 < 10 **Total Xylenes** µg/L 0.1 0.1

#MOE's Soil, Ground Water and Sediment Standards under Part XV.1 of the Environmental Protection Act, July 27, 2009 (Table 3) - All types of Property Usa

* Ontario Regulation 169/03, Ontario Drinking Water Quality Standards made under the Sale Drinking Water Act, 2002

= Concentration equals or exceeds Table 3 criteria

Concentration equals or exceeds ODWQS

Concentration equals or exceeds Table 3 criteria and ODWQS

- Method Detection Limit (lowest leve) of the parameter that can be quantified with confidence)

= Not applicable

۸

1

MDL

() Standard in bracket applies to medium and fine textured soils

Page 1 of 2

大Trow

Table 1 (continued) Soil Analysis - Juty 8, 2010 Patrokeum Hydrocarbons, VOCs, Metals, PAHs, PCBs Wellington Community Centre, Wellington, Ontarto

,

							and to be well as									
				7-64-94												****
PARAMETER	UNITS	MDL	CNICENT Residential Parkland/	(1 able 31) Industrial Commercial	8H-1 0-0.6m	8H-1 0.8-1.3m	BH-2 1.6-2.1m	BH2 30-3.7m	BH-3 1.5-2.1m	BH-3 Lab Dup 1.5-2.1m	BH-3 3.0-3.7m	BH 4 0-0.6m	BH 4 1.5-2.0m	BH5 0.9-1.5m	BH 6 2.3-2.8m	84 6 -0.6m
			Instutitional Property Use	Community Property Use												I
1157Å1S											1		505	001		< 0.5
	a/ar	0.2	7.5	(50) 40	< 0.2	< 0.2	7.3	3.3	< 0.2	-	< 0.2	7.0 2	7.9			*
dreat/c	6,61	۰.	18	18	~	2	13	~	m	•		7 7	58	40	4 <u>70</u>	32
Badiut	0/07	0.5	390	670	8	ន	470	250	2		e	70	3	-		
Dan ditem		0.2	(5) 4	(10) 8	0.4	0.4	0.7	0.6	0.5		0.5	9 C	0.00	104	3	4.6
Boons (Hot Water Soluble)	5/B/I	0.05	1.5	2	0.35	0.5	0.87	0.59	0.35	·	0.41	0.26	7.7	100		10.0
Boon	5/6/1	'n	120	120	ŝ	<5	33	õ	4 6	•	4 2	- i	0 v v			P C
Cadrien	0/07	0.1	1.2	1.9	0.2	0.2	1,3	0.9	0.2	-	3	7,5	, , , , , , , , , , , , , , , , , , ,	38	35	, , ,
Chromium	6,61	-	160	160	15	14	37	24	19		2	2,00		36		ŝ
Chromium (VI)	5/61	0.2	(10) 8	(10) 8	< 02	< 0.2	× 0.2	< 0.2	< 0.2	7.0.2			70,4		0.0	ä
Cobat	6/61	0.1	22	(100) 80	5.3	4.8		6.5	5.7	•	0.C	4	n 0	+ 0 + C	5'0 V 6 V	°.4
Connec	5/61	0.5	(180) 140	(300) 230	÷	÷	8	68	12	•	-	9.2	<u>.</u>	40.4	2 52	2 4
Lead	6/6r	-	120	120	23	24	750	450	25	·	20 07	14	70.02	2027		< 0.05
Mercury	6/6rt	0.05	(1.8) 0.27	(20) 3.9	\$0.05	< 0.05	0.36	0.32	<0.0 ×		5.57		3	200		407
Molyhdenum	6/6n	0.5	6.9	40.0	< 0.5	< 0.5	2.2	1.3	0.6	ļ					; ; ;	3
Nicka!	0/01	0.5	(130) 100	(340) 270	9.7	\$	19	21	11	·	2	0.5		20	3	
Citute	16/01	0.2	(25) 20	(50) 40	< 0.2	< 0.2	0.9	0.6	< 0.2	·	<02	20	×0.2	202	202	775
Colociter	10/01	3	2.4	5.5	< 0.5	< 0.5	1.9	0.6	< 0.5	·	< 0.5	< 0.5	< 0.5 <	<0.5 <	5.0 v	0.0 v
Thatthere	10 ⁰	0.05		3.3	0.06	0.06	0.1	0.06	0.08		0.07	0.05	0.05	< 0.05	80.0	50.0v
1 Transferen	0,00	0.05	82	ŝ	0.47	0.37	0.65	0.40	0.43	•	40	0.46	0.45	0.36	0; { 3	<u></u>
Vanaditen	0,01	2	88	86	18	18	24	21	22	'	3	<u>5</u>	2	<u>;</u>		20
Zinc	5,01	S	340	340	22	22	820	600	26		217	57	29	24		3
POLYNUCLEAR AROMATIC HYDROCARBO	HIS (PAH	(S														
	10/01	000	(58) 7.9	8	< 0.01	< 0.01	< 0.04	0.38	0.01	•	< 0.02	< 0.02	× 0.01	< 0.02	< 0.01 ×	× 0.01
Acettapranto re Accordebrations	10/01:	100	(0.17) 0.15	(0.17) 0.15	0.041	0.027	< 0.2	0.06	0.046	1	0.02	0.03	< 0.005	0.03	0.024	< 0.005
Activityans	10/0	0.01	(0.74) 0.67	(0.74) 0.67	0.052	0.041	0.7	1.1	0.11	•	0.03	9.0	< 0.005	89	0.025	< 0.905 </td
Renzed Santhranana	n0/0	0.02	(0.63) 0.5	0.96	0.17	0.17	1.2	1.6	0.21	1	0.07	0.11	< 0.01	0.13	80	× 0.01
Benzolahurana	10/0	0.01	0.3	6.0	0.23	0.19	0.9	1.3	0.15	·	0.05	0.12	20.05	0.12	190 0	
Benzolb/illuoranthene	5/6rt	0.02	0.78	0.96	0.35	0.29	1.3	1.8	870		0.08	0.17	50.02	81.D	3	5.5
Benzola h.ikerviene	5/6rt	0.04	(7.8) 6.6	9.6	0.26	0.21	< 0.8	0.76	0.10	•	v 0.6	5.0	20.02	2.9	5	77.0
RenzolkNuoranthene	6/61	0.02	0.78	0.96	0.12	0.10	0.5	0.65	0.08	·	8.0	8	500	10.0	32	
Chrysene	8/61	0.02	(7.8) 7	9.6	0.18	0.16	0.9	1.3	0.15	·	310	8.7	500	200		
Dibenzo(e,h)anthracene	6/6n	0.04	0.1	0.1	0.05	0.0	< 0.8	0.24	0.03	,			10.04	5,0		50.05
Firoranthene	5/6rt	0.01	0.69	9.6	8	0.32	2.5	3.6	0.45	·	1			200	0.00	1 205
Fluorene	6/61	0.01	(69) 62	(69) 62	0.009	0.00	64	0.55	0.060	·	20.0	500	200	800	500	000
Indeno(1,2,3-cd)ayrene	P/p/u	0.04	(0.48) 0.38	(0.95) 0.76	0.24	0.18	× 0.8	78-0	0.10	·		2001	1000	1001	200	< 0.015
1-Methyinsphihalene	6,61	<u>9</u> ,0		(85) 76	< 0.005	< 0.005	< 0.2	0.08	1900	·	10.01		20.05	1002	0.005	< 0.005
2-Methylnachthalene	19/0H	0.01			0.006	0.007	< 0.2	0.10	200.0	·	30.0			100		< 0.005
Naphthalene	9/gu	0.01	(0.75) 0.6	(28) 9.6	0.006	0.006	< 0.2	0.26	4000 ×	-			2000	au o	200	0.007
Phenanthrene	19/9	0.01	(7.8) 6.2	(16) 12	0.15	0,12	2.2	3.4	0.37	·			2000	0.00	0 11	< 0.005
Pyrene	6/61	0.01	78	<u>\$6</u>	0.31	0.25	2.1									
POLYCHLORINATED BIPHENOLS (PCBs)						10.01	00.01	10.01	10.01		<0.02	< 0.01	< 0.01	< 0.01	70.0 >	< 0.01
Total PCBs	6/6/1	0.01	0.35	3-1 1	\$ \$	10.01	10.01	12:57			and the second					
		•														

+ HOUS SAG Ground Water and Sectioned Standards under Part XV.1 of the Environmental Protection Act, July 27, 2009 (Table 3) - Resultantifectional and inductional endition of the Property Use

= Concertaison carath or success Taixe 3 sinula filesisteriai/Particand/icalai(mai Propsin) Une) = Meenco Detection Link (cancul Nore: of the potempter Nati can be outshifted with confidence) ٩

ž

• ÷

- = Mat by leade = Sandad spokratis to born 1-Medryraphttelene and 2-Medrydaphttelene, with the provision that 7 tadh are detected the sum of the two must nat accord the standard Wares steppes with a hardness greater then 200 mplu are considered poor but tabatele

.

关Trow

.

Soll Analysis - July 8, 2010 Petroleum Hydrocarbons, VOCs, Metals, PAHs, PCBs Wellington Community Centre, Wellington, Ontarlo Tabla 1

Sample us											Low second					
							_								•	
			CRITERI	A(Table 3)												
PARAMETER	UNITS	WDT	Residential/ Parkland/ Instuttional Property Use	Industrial Commercial Community Property Use	8.H-1 0-0.8m	BH+1 0.6-1.3m	BH-2 1.5-2.1m	BH-2 3.0-3.7m	8#13 1.5-2.10a	BH3 1.5-2.1m Leb Dup	BH-3 1.0-3.7m	BH 4 0-0.6m	BH 4 1.5-2.0m	BH5 6.9-1.5m	BH 5 2.3-2.9m	BH 6 0-0.6m
OFTERS CISIL UNDER AGRONS																
	16/01	ģ	(65) 55	(65) 55	₽ V	<u><10</u>	- 10 -	< 10	< 10	•	< 10	< 10	< 10	< 10	¢ ‡0	< 10
	2/2	Ģ	(150) 98	(250) 230	02 V	× 10	< 10 < 10	16	< 10		01 ×	< 10	< 10	< 10	< 10	₽ ×
PHC F3 (C16-C34 Hvancarbons)		Ģ	(1,300) 300	(2,500) 1,700	47	2	110	300	< 10		22	23	¢ 10	8	150	₽ V
PHC F4 (C34-C50 Hvdrocarbons)	0,07	ę	(5,600) 2,800	(6.600) 3,300	8	¢ \$	150	350	< 10	•	× 10	10	¢ 10	220	¢ 6	\$ \$
PHC F4G-sg (Grav. Heavy Hydrocarbons)	5/6/1	100	(5,800) 2,800	(6,600) 3,300	Ŀ		740	1,800	•	•		1,000	600		-	•
VOLATILE ORGANIC COMPOUNDS (VOCs																
Acetone	B/61	0.1	(28) 16	28 (16)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1 ▲0.1	< 0.1	× 0.1	÷.	<u>\$0.1</u>
Benzene	6/50	0.002	(0.17) 0.21	(0.4) 0.32	0.003	0.004	0.013	0.011	0.004	000	0.005	0.004	0.006	0.005	900	0.02
Sromodichloromethane	8,61	0.002	13	18	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002	< 0.002	<u> </u>	× 0.00
Jomoform	9/613	0.002	(0.26) 0.27	(1.7) 0.61	< 0.002	< 0.022	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	▲ 0.002	< 0.002	< 0.00 <
sconceethane	6/6i1	0,003	0.05	0.05	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	× 0.003	< 0.003	< 0.003	< 0.003	< 0.003	20.02
Carbon Tetrachioride	5/6/1	0.002	(0.12) 0.05	(1.5) 0.21	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0,002	× 0.00
Chtorobenzene	500	0.002	(2.7) 2.4	(2.7) 2.4	< 0.002	< 0.002	<pre>1 < 0.002</pre>	< 0.002	< 0.002	₹0.003	₹ 0.002	< 0.002	× 0.002	× 0.002	< 0.002	00.04
Xtioroform	6/04	0.002	(0.17) 0.05	(0.18) 0.47	< 0.002	< 0.002	1 × 0.002	< 0.002	< 0.002	< 0.002	× 0.02	× 0.002	< 0.002	× 0.002	< 0.002	80.0
Mbromochloromethane	6/6/1	0.002	9.4	13.0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	×0.82	× 0.00
,2-Dichiorobenzene	5/84	0.002	(4.3) 3.4	(8.5) 6.8	< 0.022	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	20 00 00 00
.3-Dichlorobenzene	6/80	0.002	(6) 4.8	(12) 9.6	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	× 0.00
.4-DictVarabenzene	8/6r	0.002	(0.097) 0.083	(0.84) 0.2	§ < 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	× 0.00
lichtorodifuoromethane	6,61	0.005	(25) 18	(25) 16	<pre>(< 0.005</pre>	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	× 0.00
.1-Dichloroethane	584	0.002	(11) 3.5	(21) 17	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002 <0.002	▲ 0.002	< 0.002	< 0.002	× 0.00
2-Dichloros(hane	5,67	0.002	0.05	0.05	< 0.002 <	×0.002	¢0.002	×0.002	< 0.002	2000 V	< 0.002	< 0.002	×0.002	<0.002	< 0.002	×0.00
1-Dichloroethylesie	563	0.002	500	10.45) U.054	200.0 2	200.0 >	200 0 V	< 0.002 2000 ×	< 0.002	200.02	× 0.002	× 0.002	2000 2	200.0 >	200.0 2	200.0 2
-1,2-Utchioroethyiene	5.65	7007	100 0.4	(31) 00	< 0.00Z	200.0 2	200.02	200.02	< 0.002		< 0.002	20.02		20070 >	200.0 2	
1, 2-Dichloroethylene	6/51	0.002	(0.75) 0.084	(9.3) 1.3	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	× 0.02	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
2-Dichlaropropane	56	0.002	<u>60.0 (cubo)</u>	(0.68) 0.16	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.00Z	< 0.012	< 0.002	< 0.002
1.3-Dichloropropene	5g	0.002	(0.083) 0.05	(0.68) 0.16	< 0.002	< 0.002	< 0.02	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.003
1,3-Dichloropropene	5/6H	005	(0.083) 0.06	(0.68) 0.16	0.002	< 0.002	× 0.002	0.002	< 0.002	× 0.002	× 0.002	0.002 0.0	< 0.002 	< 0.002	× 0.002	000
cryviuenzeros		2000	1014	5.0 0	200.0 1		200.0		2000			200.01		2000		
LIVINI CONTUNCT		20010	a c We/	34 /28/	1000	20.02	2000	0.030	10.045	0.040	U DED	1000	20000	2000	2000	
lathdana Chicaida		200	(0.96) 0.1	12116	100.0 -	20.03	C 0 03	< 0.002	< 0.003	< 0.002	20.02	< 0.003	< 0.003	10012	10012	0000
tathida tahutu Katana	a pon	0.03	(4.3) 1.7	(210) 31	50.02	2002	< 0.63	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	1000 v	\$0.0\$
Sethy Ethyl Kethne	na/a	000	(44) 16	(88)	20 S	× 0.03	× 0.03	50.03 A	< 0.03	<00×	< 0.03	< 0.03	< 0.03	× 0.03	E0.0 ×	802
(ethyl t-Butyl Ether (MTBE)	la la	0.002	(1.4) 0.75	(3.2) 11	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
(wene	B/Bri	0.002	(2.2) 0.7	(43) 34	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
1,1,2-Tetrachioroethane	6/8r	0.002	(0.05) 0.058	(0.11) 0.087	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
1,2,2-Tetrachioroethene	5/61	0.002	0.05	(0.094) 0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
etrachickoethylene	6/81	0.002	(2.3) 0.28	(21) 4.5	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	× 0.002	× 0.002	<u>^0.02</u>	2000	< 0.002
cluene	ц/бп	0.002	(6) 2.3	(78) 68	0.008	0.013	0.011	0.010	0.010	0.012	0.015	0.012	0.016	0.014	600.0	0.006
1,1-Trichloroethane	5/61	0.0021	(3.4) 0.38	(12) 6.1	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	× 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
.1.2-Trichloroethane	5/61	0.002	0.05	(0.11) 0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002 <	¢ 0.002	< 0.002	< 0.002
richlaroothylene	8/61	0.002	(0.52) 0.061	(0.61) 0.91	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	20 00 00 00	< 0.002	< 0.002	< 0.002	< 0.002	< 0.00Z	< 0.002
richtorofluoromethane	981	000	(5.8) 4	(5.8) 4	0.02	< 0.02	< 0.002	× 0.82	< 0.002	¥0.002	< 0.002	× 0.002	× 0.002	200.02		
Invi Chiorida	9,61	0.002	(0.022) 0.02	(0.25) 0.032	< 0.002	< 0.02	< 0.002	▲ 0.002	< 0.002	<0.002	<0.002	< 0.002	× 0.002	×0.002	×0.02	< 0.00Z
p-Xylenes	5/61	0.002	•	•	0.008	0.014	2000	0.006	0.009	0.011	910.0	210.0	0.009	4000		
-Xylene	5/61	20010	•		20002	502.0	CUUU 1	200.02	7000	2000	0020	2000		2		

• INCES SA, Grand Were and Sectors under Par XV1 of the Environmental Protection Act, July 27, 2009 (Table 3). • Review likely activational and Induction Systemmental Property Use

ы

.

 Concentration equals or exceeds Table 3 ctakis (PackbenishParkensinkskulona) Propory USe)
 Method Delection Linia (Ionesi level of the parameter that can be queeleded with confidence) WDF

· ¢

a kol appéablo = Sanderd in bracieti applies to medion and fine textured xole

Page 1 of 2

]					200			
Sodium	Sodium	0.04	12,7		Underlined	~ NN	6 Background	GPAL	PWQO	Table 3
Parameter in a shadod cell represents a concentration above one or more applicable criterion for at least one sampling event, for at least one groundwater sampling location.	= Parameter in bold text represents concentration above the Method Detection Limit for at least one sampling event, for at least one groundwater sampling location	= Values in bold, red text indicate an exceedance of the 2008 background range. Comparison for 2008 results only. See text for details	= Roported by the lacoratory in mg/L, but converted to µg/L for the purpose of this table = Shaded delta with bold two represent an exceedance of one or more applicable sitterion values.	 Included above with Benze(b)/Learentheme 	 Underines values in magerita print represent a Method Detection Limit above one or more epplicable criterion values 	* No value for parameter in applicable criteria * concentration below eccompanying method detect on limit.	= Bachground range developed from background aurface water samples. Companion for 2008 results only. See text for details	= Outdeline taken from the CONE: 'Canadiun Water Ouality Guidelines for the Protection of Aquatic Life'. Summary Table, Update December 2003.	= Objective taken from Table 2 of the MOEE "Provincial Water Quality Objectives", July 1994, updated October 1998, reprinted February 1999	= Standard taken from the Non-Picable Oround Wake standards in Table 3 of the "Sol. Ground Water and Sediment Standards for Use Under Part XV 1 of the Environmental Protection Act" (March 9: 2004)

NOTES:

marara ben hon ha hon-zana (Boo). Daniara ben hon ha hon-zana (Boo). Cine tean hon Tabe 2 at he VOET "Phonosi Visie Davily Dipiches". Juy 1984 yadana Octore 1981, reprinte Februar 1998

2,3,4-Inchiorophenol	2,3,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	1.2.4-Trichlorobenzene	2,3,4,5-Tetrachlorophenol	2,3,4,5-Tetrachlorophenol	Pyrene	Phanol	Phonanthrone	Parylene	Pentachiorophenol	N-Natosodi-n-propylamine	A Missouri a contractor	N. Nitros of inhand lamina	4 Nitronhanol	2-Nitrophenol	Nitrobenzene	Naphthalene	2-and 1-methyl Napthalene	2-Methyl-4,6-Dinitrophenol	Isophorone	Indole	Indeno(1,2,3-cd)pyrene	Hexachloroethane	Hexachlorocyclopentadiene	Hexachlorobutadiene	Hexachlorobenzene	Fluorene	Fluoranthene	Diphenylamine	2,6-Dinitrotoluene	2,4-Dinitratoluene	4,6-Dinitrophenol	2,4-Dinitrophenol	Dimethyl phthalate	2.4-Dimethylphenol	Diethvl phthalate	2,6-Dichlorophenol	2,4-Dichlorophenol	3,3'-Dichlorobenzidine	1.4-Dichlorobenzene	1.3-Dichlorobenzene	1.2-Dichlorobenzene	Di-n-octyl Phthalate	Di-n-buty/phthalate	Dibenzo(a,h)anthracene	o-Cresol	p-Cresol	m p.Cresol	Characterity preity enter	2-Chlorophenol	2-Chloronaphthalene	1-Chloronaphthalene	4-Chloro-3-methylphenol	p-Chloroaniline	Camphene	4-Bromobhenvi phenvi ether	Rief 9-Ethylhexvilohthalate	Bis(2-chloroisopropyl)ether	Biel 2-chloroathullathar	1,1-Biphenyi	a a Distance	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Benzo(b)fluoranthene	Benzo(a)py rene	Benzo(a)anthracene	Anthracene	Acenaphthylene	Acenapthene 4. Airo, Acenanthene	r ar ameter	Dayamatay
H0/L	H0/L	HOL	HO/L		HQ/L	HQ/L	HQ/L	1001	HOL	H0/L	HOL	HOL	101	100		In	HOL	HQ/L	HQ/L	HQ/L	HQ/L	HQ/L	49/L	HQ/L	HO/L		HQ/L			LOO/L	HQ/L	HQ/L	Hg/L	HO/L	HO/L	HO/L	HO/L	HQ/L	HQ/L	HO/L	HO/L	HO/L	HOL	HQ/L	HO/L	HQ/L				HOL	HO/L	HOL	HO/L	hg/L	HO/L	FO/L	uo/L			1921	HQ/L	104	HO/L	1/04	HO/L	HOL	HO/L	HO/L		HQL	- AND	Ittalite
VV	NN	9700	030	SOO	NN	NN	40	AN	63	NN	130	NN	ANI	NIN	NN	NN	NN	5900	13000	NN	NN	NN	0.27	12	NN	0.87	0.02	290	130	NN	NN	2300	NN	1500	30	21000	30	NN	3700	1000	7600	7600	7000	NN	NN	0.25	NN	NN	NIN	AN	44000	NN	NN	NN	100	NN	NN	30	430	110	1/00	ANN	0.4	0.2	7.0	1.0	5.0	12	2000	NN	1976	I Inble 3
18	18	18	18	05		-	NN.	-	0.03	0,00007	0.5	VIN	-	1 20	5	0.5	0.02	7	2	0.2	NN	NN	NN	1	0.05	0.000	0.0005	0.2	0.0008	3	0	4	NN	NN	0.2	10	0.2	0.2	0.2	0,0	4	2.5	2.5	0.2	4	0.002	-	-	0,000		NN	0.2	0.1	3	NN	2	0.05	00	NN	200	0.2	2.0	0.000.2	0,00002	NN	NN	0.0004	0.0008	NN	NN	- CHINA	- DWDD
18	18	18	18	24		1	0.025	AUN AU	0.4	NN	0.5	VV	NN	NIN	NIN	NN	NN	1.1	NN	NN	NN	NN	NN	NN	NN	1.3	W	3.0	0.04	NN	NN	NN	NN	NN	NN	NN	NN	0.2	0.2	NN	20	150	0.70	NN	19	N	NN	NN	NN	NIN	7	NN	NN	NN	NN	N	NN	10	NN	NN	NIN	NIN NIN	NN	NN	NN	0.015	0.018	0,012	NN	NN 9.6		I GPAL
ŀ	ŀ	·				·	<0.12	10,001	<0.11	ŀ	ŀ	ŀ	ŀ	ŀ		-		<0.12					<0.03		·			60.00	<0 12	·	·						·			·		·			•	60 09			COD		ŀ		·	·				·			ŀ	ŀ	<0.00	<0.06	<0.05	<0.01	<0.08	<0.05	-0,11	50.10		Hack-
ŀ		·				·	<0.12	10.00	<0 11		ŀ	ŀ	ŀ	ŀ				<0.12					<0.03					6.00	<0 12																	600			1000		ŀ						t		1	1	ţ.	ţ.	60 00	<0.00	<0.05	<0.01	<0.08	<0.05	6.11	e		Back-
ŀ		·		Ť.		ŀ		0.00			ŀ	ŀ	ţ.	ţ.	ļ																						1											1	1	Ţ.	Ī.						†		1	1	t.	ţ.	Ţ.							.	t	
ŀ				1			+	19.					t.	1.	+	1							-	-	-		-		-	-	-	-		-		-	-						-			-		+	1		+				-	-	+	+		+	+	t	t.	-	-	-	-			+		
$\left \right $		-	+	+			+	10					$\left \right $	+		+		_	-	-	_	-	_	-	-		+	+	+	-	-	-	-	-	-	-	+		-	-	+	-	_	-	-	+	+	+	+	+	+			-	-	-	+	+	+	+	+	+	╞	+	╞	-	-	-	+	+		
-								0.0								+	-				-				-		-										-			-		-								ľ	ŀ	-	·			-	+	+	+	-	-	ŀ	ŀ	ŀ	ŀ			·		-	ł	
0.01	0.01	0.01	01	0.04	0.04	0.04	0.01		.63	0 01	0.02	0.2		0.03	3	+		0.01	0.10	•	•	0.01	0.01	•	•	·	•	.21	22	0.5	82	0.4	:0.1	0.1	•	000	-	6.1	0.1	•	•	•	•	•	0.02	001	0.04	0.04	200		ŀ	•	·	•	•	•	-	4	-	-	ŀ	ŀ	001	0.01	0.01	0.01	:0 01	0.03	0.01	0.08		- 07
Ŀ	•	•	•		·	•	•	•	•	•	•	•	ŀ	ŀ	ŀ	ŀ	-	·	•	•	•	·	•	•	•		·	•	·	•	·	•	•	•	•	·	·	•	•	·	•	·	•	·	•	•	•	1	ŀ	ŀ	ŀ	•	·	·	•	·		•	-		ŀ	ŀ	ŀ	•	ŀ	•	·	·	•	•		00
Ŀ			•		·		•					•							•	•	•	·	•		•		·		•		•		•			•	•					•		•													•											·		. .	A A A A A A A A A A A A A A A A A A A	
		<0.5	<0 5		<0.5		<0 27		0.36		<0.5			.				<03	0.51	•			<0.27	<0.5		<0 4	65	13.0	50 07		•	<0.5			<0 5	65	605	•	<03	60.5		•		•		<0 2			12:05							•		•					<0.2	<0.2	<0.2	<0.24	<0.2	<0.3	<0.31	0.4/	- Contraction	
																ŀ		·		·									·							·	•					•								ŀ	ŀ							·		ŀ	ŀ		ŀ					·			Contract	The start
ŀ				ŀ	Ī		6.	13	<0 11						ŀ	ļ	-	0.48					<0.03					6	6							-	·									600		ţ	60		ŀ						t	+	1	ŀ	ţ.	ţ.	<0.00	<0.00	<0.0	<0.05	6.0	60.0	6.1	0.41		-
			1				۵.	25	0.50					1.	İ,	t.		04					6.0		+			DA	6				-		-	-	+	-			1	+		-	-	8	+	1	6						-	-	t	+	1	1	t.	t.	60	6.0	-0.0	8	6	0.1	8	0.0		-
-	-	+	+	+		-	8.	2	0.1	-	-	-	-		+	+		0	-	-	-		8	+	+	+			6	+		-	-	-	+	+	+	-	-			+	-		-	8	+	+	0		+		-	-	+	+	+	+	+	+	╞	+	a 6	ă ô	3	0	6	â	1	c		-
-	-	+	+	+		-	6		15 0.	-	-			+		╀			-	+	-	-	8	+					5	+		-	-	-	+	+	+	-	-	-		+		-		8		+	S		ŀ	-	-	-	+	-	+	+	+	+	ŀ	ŀ	8	8	03	00	8	07 0	11	8		
ŀ		-	+	ŀ	ľ		13	23	16		•		ŀ		ŀ	ŀ		14		-	-	-	8	-	-	+		G	5	+	-		-	-	-	+	4	-			-	-		•		8	+	+	000		ŀ	•		•	-	-	+	+	+	ŀ	ŀ	ŀ	0 06	0.06	0.03	0.09	0.08	0.1	0.11	90		- 0.4
ŀ	•	-	+		ŀ	•	0.05	13	0.12	1	•	•	ŀ	·	ŀ	ŀ		0.21	•	•	•		60.03	•	-			94.0	3		•	•	·	•	•	•	-	•	•	•	-	-	•	•		8	-	1	60.05	·	ŀ	•	•	•	•	•	-	-	1	ŀ	ŀ	ŀ	<0.05	6.06	<0.03	<0.01	80.0>	0.06	6.11	0.24		- Ne
·	•	•		ŀ	ŀ			·	·	•	•	•	ŀ	·	ŀ	ŀ			•	•		·	•	•				-			•		•	•	•	•	•	·	•	·		•	•	·		•	•			ŀ						•		•		ŀ		ŀ		•		•	•	•	•	Jamaged	College	Part Inc
•					•		60 13	21	<0.11								0.14	0 14					6.03				10.0	10.12	5				•	•										•		8			<0.05					•						ŀ		ŀ	<0.06		<0.03	<0.09	<0.08	0.1	<0.11	0.57	Contract,	
•					·			16	<0 11								10.12	C1 12		•			60.03				0.00	100	3		·				•											600			<0.05													ŀ	<0.06	<0.06	<0.05	<0.01	<0.08	<0 05	<0.11	0.2	Velter	- marine

Table C-3: Analytical Results for Groundwater - BNAs, PAHs, and Phenols Closed Zwick's Island Landfill, Belleville, ON

Table C-5: Analytical Results for Groundwater - General Chemistry, Anions, Nutrients and Headspace Closed Zwick's Island Landfill, Belleville, ON

03-1182-507

Headspace (field)	Headspace (field)	Other	Total Phosphorus	Total Kjeldahl Nitrogen	Un-Ionized Ammonia	Ammonia as N	Nutrients	Sulphate	Phosphate	Nitrite as N	Nitrate as N	Fluoride	Chloride	Bromide	Anions	Total Suspended Solids (TSS)	Total Organic Carbon (TOC)	Total Dissolved Solids (TDS)	Dissolved Oxygen (field)	Temperature (T) (field)	pH (field)	PH	Hardness	Electrical Conductivity (field)	Electrical Conductivity	Dissolved Organic Carbon (DOC)	Biological Oxygen Demand (BOD)	Alkalinity as CaCO3	General Chemistry	Parameter
%LEL	ppm		1 mg/L	mg/L		mg/L		mg/L	mg/L	mg/L	mg/L	mg/L		J/6w		1 mg/L	mg/L	mg/L	1 mg/L	°C	no units	no units	mg CaCO3/I	µS/cm	µS/cm	mg/L	mg/L	mg/L		Units
NN	WN		WN	NN	NN	NN		NN	NN	2	NN	NN	NN	NN		NN	NN	NN	NN	NN	W	NN	NN	NN	NN	NN	NN	NN		Table 3
NN	NN		0.02	NN	0.02	NN		NN	NN	NN	WN	NN	NN	NN		<10%	NN	NN	1(1)>4-7	NIA	6.5 - 8.5	6.5 - 8.5	NN	NN	NN	NN	NN	<25%		PWQO
WN	NN		NN	NN	0.019	f (T. pH)		NN	NN	0.06	13	0.12	NN	WN		5-25	NN	NN	>5.5	N/A	6.5-9.0	6.5-9.0	NN	NN	NN	NN	NN	NN		GPAL
			<0.02	0.63	<0.00146	<0.02				<0.05	<0.05	0.07	14.6			<10			10.10	13.14	8.23	8.38	126	338	267	6.8		111		Back-1
			0.02	0.60	<0.0010	<0.02				<0.05	<0.05	0.07	14.6			<10			10.07	13.03	8.21	8.37	126	341	266	7.2		107		Back-2
			0.090	108				9.79	<1.00	40.20	<0.02	<0.10	202	1.67		20,570.00											20			May-90
			0.005	100		93		4.70	<1.0	0.03	<0.20	0.15	200	1.20		3,136.00		1414				7.33	392.8		2,630	33.0	19	1,230		Jun-90
			0.065	112		88.0		0.45	Ø.1	<0.20	<0.02	<0.10	286	1.85				1594				7.16	649.0		2,890	52.0	520	1,260		Aug-90
				66.7									88.0									6.91			1,850	36.0				Dec-97
				83.9		77.8																				22.3				Dec-99
	•			49.2	•	58.1																				18				May-00
100				54.8	0.048	51.45							46.5							15.7	6.51	6.50		1.728	1,660	19		930		20-luL
	•																													Oct-03
>100			0.58	49.4	0.014	19.9			•	<0.05	<0.05		36.2							8.65	6.62	6.47	617	1274	1680	G		862		May-04
56			0.61	64.5	0.015	18.5		•	•	<0.05	0.38		49.8						4.54	14.72	6.49	6.51	564	1373	1760	18		866		Oct-04
>100			0.66	51.8	0.0036	53.3				<0.05	0.34		50.3						0.23	7.22	5.66	6.41	685	1314	1830	13		925		May-05
0	76		0.87	57.5	0.028	50				<0.05	40.05	<0.05	53.6						1.28	15.2	6.31	6.95	602	1293	1680	27		901		Oct-05
20	>500		0.7	38.5	0.0192	37.3		•	•	<0.05	40.05	<0.05	29.2				•		5.52	8.07	6.51	6.95	571	955	1460	15		765		May-06
5	>500																											Damaged		Oct-08
-	30		1.03	36		2.46		•		<0.05	<0.05	0.11	39.5									7.13	537		1400	13.3		722		Det-07
•	100		0,65	58.4	0,027	42.1		•		40.05	<0.05	0.07	53.5			198			1.22	12.21	6.47	7.23	640	2040	1800	20.9		893		Oct-08

			9
			'n
			ľ
			-
			ş
			2
			F.
			Z
			<
			Ş
			1
z			
IE			
ŝ			'
			-
			'
			-
			1
			'
			÷
			1
	2		_
			_
			_
			d
			ö
			Ċ
			1
			2
			8
		l	
			1
			ç
			U)
		l	_
			7
			8
		ļ	_
			0
		۱	_
			2
			-
		ļ	_
			s
			1
		ļ	_
			_

Table C-6: Analytical Results for Groundwater - Metals Parameters Closed Zwick's Island Landfill, Belleville, ON

100	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-		-
Alkalinity as CaCO3	Hardness	Zirconium	Zinc	Vanadium	Uranium	Titanium	Tin	Thorium	Inalium	Strontium	Sodium	Silver	Silicon	Selenium	Potassium	Phosphorus	Nickel	Molybdenum	Mercury	Manganese	Magnesium	Lead	Iron	Copper	Cobalt	Chromium	Calcium	Cadmium	Boron	Bismuth	Beryllium	Barium	Arsenic	Antimony	Aluminum	Parameter
mg/L	mg CaCO3/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Units
W	W	NN	1.1	0.200	NN	NN	W	WN	0,400	W	W	0.0012	W	0.050	W	W	1.6	7.3	0.00012	W	W	0.032	NN	0.023	0,100	2	W	0.011	50	NN	0.053	23	0.480	16	NN	Table 3
<25%	WN	0.004	0.02	0.006	0,005	NN	WN	W	0.0003	NN	NN	0.0001	W	0.1	WN	W	0.025	0.04	0.0002*	WN	NN	(hard) 0.001 - 0.005	0.3	f(hard) 0.001 - 0.005	0.0009	0.0099	NN	f(hard) 0,0001 - 0,0005	0.2	W	f(hard) 0.011 - 1.1	WN	0,005	0.02	f(pH) 0.015 - 0.075	PWQO
W	W	WN	0.03	W	WN	NN	W	W	0.0008	W	W	0.0001	W	0.0010	W	w	f(alk) 0.025 - 0.15	0.073	0.000026	W	W	f(alk) 0.001 - 0.007	0.3	f(alk) 0.002 - 0.004	W	0.0099	NN	0.000017	WN	W	W	WN	0.0050	NN	/(pH, Ca, DOC) 0.005 - 0.1	GPAL
111	126		<0.005	<0.002		<0.002			<0.0003	0.125	8.58	<0.0001	2.16	<0.0008	1.19		<0.003	<0.002	<0.00002	0.020	4.69	<0.001	0.025	<0.002	<0.0005	<0.003	42.8	<0.00005	0.013	<0.002	<0.001	0.035	<0.003		0.012	Back-1
107	126		<0.005	<0.002		<0.002			<0,0003	0.123	8.73	<0.0001	2.11	<0.0008	1.22		<0.003	<0.002	<0.00002	0.021	4.76	<0.001	0.021	<0.002	<0.0005	<0.003	42.8	<0.00005	0.013	<0.002	<0.001	0.034	<0.003		0.014	Back-2
ŀ		<0.02	0.06	<0.005		<0.005		<0.05	ŀ	1.07	148	<0.005	8.67		59.4	1.0	<0.05	<0.2		0.49	31.1	<0.05	41.6	<0.01	<0.05	<0.01	124	<0.005	0.505		<0.0005	0.253			<0.05	May-90
1230	392.8	<0.02	0.04	<0.005		<0.005		<0.05		1.09	146	<0.005	8.34		53.9	1.0	<0.05	<0.2		0.36	28.0	40.05	41.6	<u><0.01</u>	<0.05	<0.01	111	<0.005	0.458		<0.0005	0.264			<0.05	Jun-90
1260	649.0		0.0027	0.0014		0.0019				1.09	389	<0.0003	6.55		73.5	<0.03	<0.003	<0.01		0.206	42.8	<0.003	9.16	<0.0005	<0.003	0.0006	189	0.0013	0.800		<0.00003	0.255			0.012	Aug-90
			0.20									-								0.47		<0.005	44.8	<0.05		<0.01		100.0>				0.035				Dec-97
																				0.44			1.69													Dec-99
																				0.88			90.5												•	May-00
930			0.0977	0.00076		0.00130			<0.00036	0.914		<0.00070		0.00085			0.00141	<0.00047	<0.0001	0.903		<0.00044	47.900	0.00125	0.0023	0.0017		<0.00067	0,338	<0.00033	<0.00184	0.315	0.00118	<0.00153	0.0110	Jul-03
																																				Oct-03
862	617		0.00842	<0.00040		<0.0020			<0.00030	0.791	46.0	<0.00010	11.8	0.00124	27.5		0.00182	<0.00047	<0.00010	0.889	28.2	<0.00044	46.5	0.00236	0.00182	0.00062	201	<0.00020	0.234	<0.00020	<0.00184	0.22	0.00076	<0.00153	0.00993	May-04
866	564		0.00260	0.00091		0.00142			<0.00030	0.755	58.8	<0.00010	15.5	0.00177	31.5		0.00123	<0.00047	<0.0001	0.597	27.4	<0.00044	38.9	<0.00078	0.0026	0.00788	181	<0.00020	0.459	<0.00020	<0.00184	0.235	0.00118	<0.00153	0.0120	Oct-04
925	685		0.202	0.00062		0.00102			0.00679	0.808	52.7	<0.00010	11.4	0.00788	30.9		0.00263	<0.00047	<0,00010	0.779	33	0.00354	1.140	0.0172	0.00217	0.00404	220	<0.00020	0.337	<0.00020	<0.00184	0.100	0.00968	<0.00153	0.023	May-05
901	602		0.00752	<0.00040		0.00168			<0.00030	0.964	44.7	<0.00010	11.4	0.00179	28.4		0.00183	<0.00050	<0.00002	0.625	29.6	<0.00044	47.2	<0.00080	0.0025	0.00715	192	<0.00020	0.551	<0.00020	<0.001	0.284	0.00158	<0.00150	0.0047	Oct-05
765	571		0.0118	<0.0004		0.0006			<0.00030	0.746	33.5	<0.0001	10,900	<0.00080	20.6		0.0009	<0.0005	<0.00005	0.997	25.3	<0.0005	45.4	<0.0008	0.00169	0.00167	187	<0.00020	0.254	<0.0005	<0.001	0.224	<0.0006	<0.001	0.00585	May-06
·		·	·		·																		·												Damaged	Oct-06
722	537		0.006	<0 0004		<0.0005			<0.0003	0.626	38.4	<0.0001	10.3	<0.0008	21		<0.0006	<0.0005		0.796	21.12	<0.0005	<0.005	<0.0008	0.00099	0.00075	180	<0.0002	0.293	<0.0005	<0.001	0.125	<0.0006		0.00227	Oct-07
893	640		<0 005	<0.002		0.002			<0.0003	1.10	58,9	<0.0001	12.0	0.0015	31.0		0.006	<0.002	<0.00002	0.778	28.2	<0.0005	49.7	<0.002	0.003	0.013	210	<0,00005	0.427	<0.002	<0.001	0.305	<0.003		0.005	Oct-08

mg/L		
WV	101	
%C7>		
NN		
111		
107		
	Ī	
1230	00000	
1260	0.010	
	Ī	
	ľ	•
930	ľ	
	ŀ	
862	017	
866	400	
925	000	
901	200	
765	1 10	
	mg/L NV <23% NV 111 107 - 1230 1260 882 866 925 901 765	mpL NV -25% NV 111 107 - 1230 1280 - - 930 - 882 866 925 901 757

1		L
1	6	L
1	4	1
2	S	
ŝ	20	
Į.	ģ	
5	5	
ō	ŝ	
ł.	TO	
1	3	
5	2	
Ę	No.	
5	2	
	ota	
ţ	Did.	
2	9	
3	ĉ	
2	ě.	
	¥ 0.7	
	8	
	â	
	ğ	
	ĝ	
	5	
	E.	
	8	
	ē.	
	7	
	in	
	2	
	0	
	ŝ	
	ď.	
	≥ 8	
	8	
	5	
	s	
	ġ.	
	ŝ.	
	ŝ	
	5	
	in the	
	5	
	2	
	8	
	S	
	2	
	Pa	
	×	
	2	
	0	
	2	
	-	

Meery Environmental Francesion Act, Plaketa J. 2020)
 Morgano - Objective stark term Table 2 Units MOE - Environal Water Quality Objective," July 1994 updated October 1998, representation 2000.
 ORA Oradiane taken them the COVE: "Canadian Water Quality Objective," July 1994 updated October 1998, representation of the parameter in program background and the water tamples. Comparison for 2008 results only. See tool for details.
 / Duberty - Forder of the parameter in program term procession of Acquate Life", Summery Table, Updated December 2000.
 with environmental parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 / Duberty - Forder of the parameter in programmers and decelore limit.
 // Duberty - Forder of the parameter in programmers and the Doctore limit above one or more applicable citation values.
 // Duberty - Forder of the aventer start proceeds: a Method Doctore limit above one or more applicable citation values.
 // Duberty - Forder of the aventer start proceeds: a Method Doctore limit above one one time applicable citation values.
 // All we in bodi, red for discuss an escendance of one or more applicable citation value.
 // All we in bodi and tool citation an escendance of one or more applicable citation value.
 // All we in bodi and tool citation an escendance of one or more parallela citation value.
 // All we in bodi and tool citation of an escendance of one or more parallela citation value.
 // All we in bodi and tool citation an escendance of one or more parallela citation value.
 // All we in bodi and tool c

Iron a Parameter in bold text represents concortination above the Method Detection Limit for at least one sampling event, for at least one groundwater sampling location Iron Parameter location. in a shadod

ntration above one or more applicable criterion for at least one sampling event. for at least one groundwater sampling

4 of 9

Table C-7: Analytical Results for Groundwater - Pesticides Closed Zwick's Island Landfill, Belleville, ON

_	_		_	_		_	_	_	_				_	-					_		
Toxaphone	Marex	Methoxychior	Heptachlor Epoxide	Heptachlor	Endrin Aldehyde	Endrin	Endosultan Sulphate	Endosultan II	Endosulfan I	Dieldrin	2.4-DOT	4.4-DOT	4.4'-DOE	4,4*-DDD	Chlordane	Gamma-BHC (Lindane)	Dolta-BHC	Bota-BHC	Alpha-BHC	Aldrin	Parameter
LIGH	HOL	HO/L	HOL	HO/L	HQ/L	H0/L	HO/L	HOL	Hg/L	H0/L	H0/L	HO/L	H0/L	HOL	HOL	HOL	H0/L	HOL	HOL	HQ/L	Units
NN	NN	0.3	0.0	0.04	NN	0.05	WN	0.50	0.50	0 02	0.05	0.05	20	0.0	0.04	NN	NN	NN	NN	0.2	Table 3
0.008	0.001	0.04		0.001*	NN	0,002	NN		- 6000	0.0017			*2000		0.00	0.01	NN	NN	NN	0.001	PWQO
NN	NN	NN	NN	NN	NN	NN	NN		0.02	NN	NN	NN	NN	NN	NN	0.01	NN	NN	NN	NN	GPAL
																					Back-1
																					Back-2
																					May-90
<0.0000	<0.0020	<0.0030	<0.0010	<0.0010	<0.0040	<0,0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0020	<0.0020	<0.0010	<0 0020	<0.0200	<0.0010	<0.0010	<0.0020	0.005	<0.0010	Jun-90
<0.0000	<0.0010	<0.0015	<0.0005	0,0035	<0.0020	<0.0010	<0.0010	<0.0005	<0.0010	<0.0005	<0.0010	<0.0010	<0.0005	<0 0010	<0.0100	<0.0005	0.0009	0.0014	0.004	0.0008	Aug-90
																					Dec-07
																					Dec -99
																					May-00
			ŀ								ŀ										Jul-03
											ŀ										Oct-03
																					May-04
ŀ				ŀ								ŀ	•								Oct-04
					•				•	ŀ											May-05
ŀ					•			ŀ	•			ŀ									Oct-05
																					May-06
																					Oct-06
								ŀ													Oct-07
				ŀ				ŀ				ŀ				•			ŀ		0c1-08

Table 3	 Standard taken from the Non-Potable Ground Water standards in Table 3 of the "Soil, Ground Water and Sedment Standards for Jinder Part XV 1 of the Environmental Protection Act. (March 9, 2004)
PWQO	Dijective taken from Table 2 of the MOEE "Provincial Water Quality Objectives". July 1994, updated October 1998, reprinted Form
GPAL	» Guideline taken from the CCME "Canadian Water Quality Guidelines for the Protection of Aquatic Life". Summary Table, Update Dt 2003
2008 Background	Background range developed from background surface water samples. Companson for 2008 results only. See ted for details No value for parameter in applicable criteria.
Underland	≋ concentration below accompanying method detection limit. ⊢Underlined values in manenta print ropresent a Method Delection Limit above one or more applicable criterion values.
	* Not analyzed
	Criterion represents the sum of Aldrin and Deldrin I Orience is for the sum of noncentrations of the parameters advandt to the combined cell
12.7	Shaded cells with bold test represent an exceedance of one or more applicable criterion values
0.04	Values in bold, red text indicate an exceedance of the 2008 background range. Comparison for 2008 results only. See text for details and the second br>second second br>second second s
Aldrin	Parameter in bold text represents concentration above the Method Detection Limit for al least one sampling event, for al least one youndwater sampling location
Aldrin	Parameter in a shaded cell represents a concentration above one or more applicable criterion for al least one sampling event. for al i me groundwater sampling location

Golder Associates

4 of 9

03-1182-507

Table C-8: Analytical Results for Groundwater - VOCs Closed Zwick's Island Landfill, Belleville, ON

r	-			-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12-Chloroethylvinylether	m, p & o Xylenes	11,3- Dichloropropene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	o Xylenes	1,1,2,2-Tetrachloroethane	Styrene	Bromoform	m & p Xylenes	Ethylbenzene	Chlorobenzene	1,1,1,2-Tetrachloroethane	Tetrachloroethene	1,2-Dibromoethane (Ethylene	Dibromochloromethane	2-Hexanone	Toluene	1,1,2- Trichloroethane	trans-1,3-Dichloropropene	Methyl Isobutyl Ketone	cis-1,3-Dichloropropene	Bromodichloromethane	Trichloroethylene	1,2-Dichloropropane	Benzone	Carbon Tetrachloride	1,1,1-Trichloroethane	1,2-Dichloroethane	Chloroform	cis-1,2- Dichloroethene	Methyl Ethyl Ketone	1,1-Dichloroethane	Methyl-t-Butyl Ether	trans-1,2- Dichloroethene	Dichloromethane (Methylene	1,1-Dichloroethene (Dichloroe	Acetone	Trichlorofluoromethane	Chloroethane	Bromomethane	Vinyl Chloride	Chloromethane	Parameter
Hg/L	HO/L	Hg/L	HQ/L	HB/L	H0/L	HO/L	HQ/L	HQ/L	Hg/L	HQ/L	HO/L	Hg/L	hd/r	H9/L	H9/L	Plant Part	Hg/L	HG/L	Hg/L	H9/L	H0/L	Hg/L	HO/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	HG/L	d ho/L	HQ/L	Hg/L	Hg/L	H0/L	Hg/L	1 hd/r	Units
WV	5,600	3.8	500	7,600	7,600	7,600		22	940	840	5,600	28,000	500	6.0	5.0	3.3	50,000	W	5,900	16,000	W	50,000	3.8	50,000	50	9.3	1,900	17	200	17	430	70	50,000	9,000	50,000	100	50,000	0.66	3,300	W	NN	3.7	0,5	NN	1 aple 2
NN	72	W	0.5	2.5	4	2.5	40	70	4	60	32	8	15	20	50	5	40	W	0.8	800	7	W	W	200	20	0.7	100	W	10	100	NN	200	400	200	200	200	100	40	W	W	NN	0,9	600	700	LAND
W	W	W	24	0.70	26	150	W	W	72	W	W	90	1.3	W	111	W	NN	NN	2.0	W	W	W	W	W	21	NN	370	13.3	W	100	1.8	NN	NN	NN	10,000	NN	98.1	NN	NN	W	NN	W	NN	NN	OPML
	<0.2	<0.30	<0.3	<0.1	-0.1	-0.1	-0.1	6.1	<0.1	-0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.3	<0.5	<0.4	<0.2	<0.2	<0.17	<0.4	Dack-1
	<0.2	<0.30	<0.3	<0.1	-0.1	<0,1	-0.1	6.1	.co.1	.0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.3	<0.5	<0.4	<0.2	<0.2	<0.17	<0.4	Dack-2
	4.7			0.9 3	5.50	<1.0		-S.0		<10.0		<1.0	14.5		<2.5		<5.0		0.7*	<2.5	<2.5		<2.5	<1.0	<1.0	<1.0	5.1	<1.0	<1.0	<1.0	<1.0			<1.0		<1.0	<10.0	<2.5		<5.0	<25.0	<10.0	<10.0	<10.0	MPAA-20
	ŀ							ŀ		ŀ																															•				1 100-90
	1.9			0.4	2.10	<0.2		<1.0		<2.0		<0.2	6.9		<0.5	-	<1.0		0.4	<0.5	<0.5		<0.5	<0.2	<0.2	<0.2	2.2	<0.2	0.5	<0.2	<0.2			<0.2		<0.2	<1.0	<0.5		<1.0	<5.0	2.0	<2.0	<2.0	Aug-u
<0.06	0.8			<0.1	3.40	<0.2		<0.2		<0.1		<0.1	8.5		<0.04		<0.3		0.3	<0.07	<0.03		<0.04	<0.2		<0.03	3,10	<0.04	<0.06	<0.1	<0.1	<0.07		<0.06		<0.07	<0.2	<0.1			<0.2	<0.4	<0.2	<0.3	1 Doc-a
	ŀ							ŀ		ŀ																																			Catery
	ŀ																																			-									S WAY-UL
	0.48				ŀ			ŀ				<0.05							0.12								1.2																		1 101-05
	<0.56											<0.2							<0.16								3.2																		UCT-US
	0.6	<0.5	<0.3	0.5	3.2	<0.1	0.4	<0.1	<0.1	<0.1	0.2	<0.1	11	<0.1	<0.1	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	1.7	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.2	5.6	<0.4	<0.2	<0.2	<0.17		00-4030
	0.57	<0.5	<0.3	0.55	2.5	<0.1	0.24	6.1	<0.1	<0.1	<0.2	<0.1	10	<0.1	<0.1	<0.2	<0.1	<0.3	0.23	<0.2	40.3	<0.3	40.2	<0.2	<0.2	<0.2	2.1	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.2	20	<0.4	<0.2	<0.2	<0.17		001-04
	<0.2		<0.6	<0.2	1.6	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	7.6	<0.26	<0.2	<0.4	<0.2	<0.6	<0.4	<0.4	<0.6	<0.6	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.6	<0.4	<0.4	<0.4	<1.8	<0.6	<0.4	<0.4	<0.6	<0.4	28	<0.48	<0.44	<0.46	<0.34	<0.28	CO-ABIN
	0.24		<0.3	<0.1	4	<0.1	0.24	<0.1	<0.1	<0.1	<0.2	<0.1	15	<0.1	<0.1	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	2.2	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.2	6.4	<0.4	<0.2	<0.2	0.17	<0.4	002-00
	<0.2		<0.3	<0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	5.7	<0.1	<0.1	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	0.84	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.2	<0.5	<0.4	<0.2	0.73	<0.17	<0.4	NOV-UD CLARK
	0.32		<0.3	0.74	3.7	<0.1	0.32	<0.1	<0.1	<0.1	<0.2	<0.1	15	<0.1	<0.1	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	1.8	<0.2	<0.3	<0.2	<0.2	<0.2	<0.9	<0.3	<0.2	<0.2	<0.3	<0.2	<0.50	<0.4	<0.2	<0.2	<0.17	,<0.4	a way-ua
	. 0.2		<0.3	0.79	3.5	-0.1	0.2	<0.1	<0.1	<0.1	<0.2	<0.1	12	<0.1	-0.1	<0.2	<0.1	<0.3	<0.2	<0.2	<0.3	<0.3	<0.2	<0.2	<0.2	<0.2	1.2	<0.2	<0.3	40.2	<0.2	<0.2	<0.9	40.3	<0.2	<0.2	<0.3	<0.2	<0.5	<0.4	<0.2	<0.2	<0.17	<0.4	000000
																																												DRY	10:00
	<0.20	<0.30	<0.30	<0.10	2.7	<0.10	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	9.6	<0.10	<0.20	<0.20	<0.10	<0.30	<0.20	<0.20	<0.30	<0.30	<0.20	<0.20	<0.20	<0.20	1.5	<0.20	<0.30	<0.20	<0.20	<0.20	<0.90	<0.30	<0.20	<0.20	<0.30	<0.30	<0.50	<0.40	<0.20	<0.20	<0.17	<0.40	001-00

NOTES:	
Table 3	Standard taken from the Non-Petable Ground Water standards in Table 3 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (Nexch 9, 2004)
PWQO	Bolycotive taken from Table 2 of the MOEE "Provincial Wator Quality Objectives", July 1994, updated October 1996, reprinted February 1999.
GPAL	= Guideline taken from the CCME "Canadian Water Quality Guidelines for the Protection of Aquatic Life", Summary Table, Update December 2003.

08 Background =	GPAL = 0
sackground range developed from background surface water samples. Comparison for 2008 results only. See text for details.	Suideline taken from the CCME "Canadian Water Quality Guidelines for the Protection of Aquatic Life", Summary Table, Update December 2003

. . vionedel III appleaure v....... volow accompanying method detection limit. ues in magenta print represent a Method Detection

alue

applicable criterion values

0.04

- Values in bold, red text indicate an exceedance of the 2008 background range. Comparison for 2008 results only. See text for details

Vinyl Chloride Parameter in bold text represents above the Method Detection Limit for at least one sampling event, for at least one groundwater sampling location

Parameter in a shaded cell represents a entration above one or more ion for at least one pling event, for at least one gro

_																																						2202																																				
2,3,4-1 noniorophenol	2,3,5-Trichlorophanol	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	1,2,4-Trichlorobenzene	2.3,5,6-Tetrachlorophenol	2.3.4 B. Tetrachloronhanol	Pyrene 3.3.4.5. Tetrachlorophanol	Phenol	Phenois*	Phenanthrene	Perylene	Pentachlorophenol	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	4-Nitrophenol	2-Nitrophenol	Nitropenzene	outorecrutedene	A-allo 1-mouty: Maputatoria	2-Metryy-4, 0-Unitrophenol	isophorone		indele i, z, o-cuj byt utte	Indeposit 9 3 collections	Lavachiosoathana	Lavablementerionatadiana	Hayachlomhutadiana	Hexachlorobenzene	Fluorene	Fluoranthene	Dipheny lamine	2,6-Dinitrotoluene	2,4-Dinitrotoluene	4,6-Dinitrophenol	2,4-Dinitrophenol	Dimethyl phthalate	2,4-Dimethylphenol	Diethyl phthalate	2,6-Dichlorophenol	2,4-Dichlorophenol	3,3'-Dichlorobenzidine	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Di-n-octyl Phthalate	Di-n-butylphthalate	Dibenzo(a,h)anthracene	o-Cresol	p-Cresol	m,p-Cresol	Chrysene	4-Chiorophenyl phenyl ether	2-Chlorophenol	2-Chioronaphthalene	1-Chloronaphthalene	4-Chloro-3-methylphenol	- Chinoanilina	r-Bluttopizettyi pizettyi euzet	Dia(2-Culyntexy)/priutetee	Dis / 2 Eth Jaco Jack the late	Dis(2 chlorois correct/bather	Dia(2-citici cellisoxy jitter leste	1.1-Biphenyl	penzyiputyipnmaiate	Delizor Ajiador anarateme	penzo(g,n,i)peryiene	penzo pinoranmene	benzo(a)pyrene	Bonzo(a)attutt avere	Denver alanthranana	Anthonon	5-nitro-Acenapthene	Acenapthene	Parameter
11/0/1	H0/L	H0/L	HQ/L			1981	19/1	HOL	H0/L	h0/L	HQ/L	holl	H0/L	HO/L	H0/L	1/04/L	10/1	101	100	101	10/1	1991	192.0	PAR-	1994	1001			HO/L	H0/L	H0/L	HO/L	HO/L	H0/L	HO/L	H0/L	1/04	H0/L	H0/L	10/1	H0/L	10/2	H0/L	H0/L	10/1	H0/L	19/2	H0/L	HQ/L	H0/L	H0/L	H0/L	HOL	HQ/L	HQ/L	uo/L	10/1	1961	192-	1981	1921	1921	HOL	101	1991	194	Light	101	1991	1991	191	HOL	HQ/L	Units
NIN	NN	9700	630	500	NN	NN	40	20000	NN	03	NN	130	NN	NN	NN	NN	WV	ONAC	-	VV	NIN	VINI	0.21	21	10	NIN	0.87	0.62	290	130	NIN	NN	2300	WN	1500	30	21000	30	NN	3700	1000	7000	7600	7800	NN	NN	0.25	W	WN	NN	3.0	NN	44000	NN	NN	NN	100	NN	NIN	204	110	ANI	1/00	AMA	10.4	2.0	2.0	1.0	10	21	10	NAN	1/00	Table 3
18	18	18	18	0.5	-		NN	0	1	0.03	0,00007	0.5	NN	7	50	0.5	0.02	-	4 1	2.0	ANN	VIN	A MAI	NIN	-	0.000	0000	0.0005	0.2	0,0008	3	0	4	NN	WN	0.2	10	0.2	0.2	0.2	0.0	4	2.5	2.5	0.2	4	0,002	-	-		0.0001	0.05	NN	0.2	0.1	3	NN	0,00	0.0	100	NIN	AM	20	2.0	0.0002	0.0002	AMI AMI	NIN	NN	0.0000	A MN	NIN	NN	PWQQ
18	18	18	18	24	-	-	0.025	NN	4.0	0.4	WN	0.5	NN	NN	NN	NN	NN	1.1	AM	NN	NN	AM	A MI	VINI	NIN	NN	12	NN	3.0	0.04	NN	NN	NN	NN	WN	NN	NN	NN	0.2	0.2	NN	20	150	0.70	NN	19	WN	W	WN	NN	WN	NN	7	NN	NN	NN	NN	NN	NIN	100	NN	NIN	NN	AN	A MI	NIN	NIN	UNIN	0.010	0.012	210 0	NIN	NN	GPAL
ŀ							<0.12		<0.001	<0,11	•							10.12			ŀ		10.00	3	1	-			<0.00	<0.12										ŀ							<0.09				<0.05													ŀ	10.00	10,00	10.00	10.01		10.02	60.00	m11	<0. To	Back-1
ŀ							<0.12	ŀ	<0.001	<0.11								50.12		ŀ	ŀ		10.00	3	ľ	ļ	-		<0.00	<0.12							ŀ			ŀ	ŀ		ŀ	ŀ		ŀ	<0.09		ŀ		<0.05	ŀ		·						1		ŀ		ŀ	1000		10.00	10.01		40 08	005	m 1	50.10	Back-2
ŀ							ŀ	·	2.5								ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ļ	ŀ	1	·							ŀ		ŀ			ŀ	ŀ	ŀ	ŀ	ŀ		ŀ	·		ŀ	ŀ		ŀ	ŀ	·				1	1	1		ŀ		ŀ	ŀ	ŀ	ŀ	1	1	ŀ	Ţ	Ţ	Ţ	May-90
ŀ							ŀ		4.0							ŀ	ŀ	ŀ	ŀ	ŀ			ŀ		ļ	ļ		·									ŀ				ŀ		ŀ	ŀ		ŀ			ŀ	ŀ		ŀ		·		-		ļ	ŀ	ļ	1	ŀ		ŀ	ŀ	ŀ	1	1	ļ	Ţ.	Ţ	Ţ.	Ţ	Jun-90
ŀ						ŀ	ŀ		7.0							ŀ		ŀ	ŀ			ŀ	ŀ	1	ļ	ŀ		•															ŀ			ŀ			ŀ					·		1	1	ļ		1		ļ			1	1	1	1	1	ţ.	ţ	ţ.	ţ.	Aug-St
<0.01	<0.01	<0.01	<0.01		60.04	0.04	0.97	<0.04		1.69	<0.01	<0.02	<0.2	<0.005	<0.03			50.01	0.32			10.01	10.01		ŀ	ļ			0.57	1.38	0.7	<0.2	<0.4	<0.1	<0.1		<0.09		<0.1	<0.1						<0.02	<0.01	<0.04	<0.04	<0.04	<0.00	63	-0.1	<0.01	<0.01	\$0.00			10.02	2002	0.00	20.0		10.02	3	10.01	10.01	10.01	-	<0.01	0.14	20.01	0.00	Dec-S
ŀ						ŀ										ŀ	ŀ	ŀ	ŀ		ŀ	ţ.	†	1.	ļ	ļ														ŀ						ŀ			ŀ			ŀ						ļ		1	1	1		ŀ	1	ţ.	1	Ţ.	ţ.	Ţ		ţ.	ţ	Duc-0
ŀ																			ţ.				ţ.		ļ	1																										ŀ						1	1	+				1	1	1	1	1	1		†	†	†	9 May-6
-		<0.5	-0.5				0.95	<0.5		<0.3		<0.5						40.3	1.0				10.2	10.0		1		6	1.3	1.7			<0.5			60.5	6.5	\$0.5		<0.3	<0.5		-				<0.2				10.2		<0.3				6	†	10.0		3.0		100		100				6	0	0.50	3.	-	0-truc 00
ŀ		<0.5	6.5				4.6	<1.0		7.3		A0.5						6.3	2.1				0.10	10.0		K		6	2.1	6.3			<0.5			40.0	-0.5	<u>^0</u>		<0.3	-0.5						6				2.0		-0.3				6	1	10.1	0.0	6		10		0.0	0.1.0	0.7	1.0	11	1.9	1.6	63		1 001-0
ŀ									2		-														1																	-	-					-								-		+														-	+	33 Marys
ŀ			+		1		0.9		2	5.5	-							0.2	<u>.</u>				10.0		+				2.5	1.6									-			-	-			- .	8				0.0					+		+		+					10		0.0		6	0.0	- (Α.	-	04 061-
ŀ	-		+	+	+		0.1		2	8	-							0.2		.			6		+	1			0.2	0.1									-		-	-	-			-	00	-		-	100					+	+	+	+	+			1.		2					8	84	å .		Acgil 90
-	-		+		+		0.4			-	-	-						0.2	,	-			5		+			-	0.7	0.7									-		-		-			-	000				100					+		+	+				1	+	2					5 F	6	6	-	05 Oct-
┝	-	_	+	+	+	+		-	-	-	+	-		_	_				1	$\left \right $	+		6	-	╞		+		•	0	-	-	-	-	-	-	-	-	-	-		╞			-	\vdash	8	-	$\left \right $		5				-	+	+	+	$\frac{1}{1}$	+	+	╉	+	+	1		5	2	8	5	4	-	╉	05 Nov
ŀ	•	•	•			ŀ	1.6	•	4	1.9	•	•	•	•		•	•	0.3		•	•	ľ	0.12		ŀ			•	1.1	2.3		•	•	•	•	•	•	•	•	•	•	•	ŀ	•	•	ŀ	60.09	•	•	•	0.64	ŀ	•	·	•	•	1	ľ			1	1		ŀ	0.00	0.11	0.04	0.24	0.37	0.64	0.59	-n 11	0.84	05 C2/R1
							0.46		4	1.9								0.19					<0.03						0.96	0.81																ŀ	<0.09				<0.05														10,00	10.00	10.00		60	<0 08	0.42	6011	0.04	May-06
·							0.54		-1	1.7	·							0.33		ŀ	ŀ	ŀ	0.1/		ŀ		İ		1.3	0.73																ŀ	<0,09	ŀ		ŀ	0.24	ŀ				1		ļ	1	1	1	1			0.10	0.11	0.47	0.2	8.2	0.22	0.25	611		0ct-0i
					1			-			-														+	+		-		•	-	-		-		-		-	-		-							-										1				+	1.	1	1	1		1		-	. . .	+	-	Det-4
				1	1.		4.1	-	(A		+	-	-	-				A					-		+					5	-	-		-				-	-							-	0.1				3.	-		-		-							1	+					2	2	-	0.5		17 Oct.
L							Ĩ			1				1				N					1		ľ	ſ	1		1	1						ſ						Ĺ					0				-		Ĺ					ľ	ľ		ľ	ľ	ľ	ſ	ľ		1			ľ	-13	-	18	i da

NV = No value for parameter in applicable criteria	2008 Background = Background range developed from background surface water samples. Comparison for 2008 results only. See text for details	GPAL = Gudeine taken from the CCNE 'Canadian Wake Quality Guideines for the Protection of Aquatic Life', Summary Table, Update Docem	PWCO = Objective taken from Table 2 of the MOEE "Provincial Water Quality Objectives", July 1994, updated October 1998, reprinted February	Table 3 = Standard taken from the Non-Potable Ground Water standards in Table 3 of the "Sol, Ground Water and Sediment Standards for Use I (March 9, 2004)
	See text for details	ummary Table. Update December 2003	iber 1998, reprinted February 1999.	Sediment Standards for Use Under Part XV.1 of the Environmenta

0100 00

= Not analyzed

only. See text for details

Sodium =

Parameter in bold text represent above the Method Detection Limit for at least one sampling event, for at least one ground

Parameter in a shader sampling location

one or more appl able criterion for at least one sampling event, for at least one o

Golder Associates

sampling locatio

Table C-5: Analytical Results for Groundwater - General Chemistry, Anions, Nutrients and Headspace Closed Zwick's Island Landfill, Belleville, ON

c			
7		ŝ	
N	c		
2	5		
	1		
-	1		
é	C.	5	
	r		
¢	1	۲	
2	5,		
•	-		
*	•	4	

Heads	Heads		Total	Total	Un-lor	Ammo		Sulph	Phosp	Nitrite	Nitrati	Fluori	Chlori	Brom		Total	Total	Total	Disso	Temp	pH (fie	뫄	Hardn	Electr	Electr	Disso	Biolog	Alkalic		Γ	
space (field)	space (field)	Other	Phosphorus	Kjeldahl Nitrogen	nized Ammonia	onia as N	Nutrients	ato	hato	as N	o as N	de	de	de	Anions	Suspended Solids (TSS)	Organic Carbon (TOC)	Dissolved Solids (TDS)	hed Oxygen (field)	erature (T) (field)	(bid		055	ical Conductivity (field)	ical Conductivity	ved Organic Carbon (DOC)	lical Oxygen Demand (BOD)	nity as CaCO3	General Chemistry	Parameter	
% LEL	ppm		mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	°C	no units	no units	mg CaCO3/L	ILS/cm	µS/cm	mg/L	mg/L	mg/L		Units	
NN	NN		NN	W	NN	W		W	W	2	W	NN	NN	NN		W	NN	WN	W	NN	W	NN	NN	W	WN	WN	NN	NN		Table 3	
NN I	NN		0.02	NN	0.02	NN		NN	NN	NN	NN	W	NN	NN		<10%	NN	NN	1(1) >4 - 7	NIA	6,5-8,5	6.5 - 8.5	NN	NN	NN	NN	WN	<25%		PWQO	
NN	NN		NN	W	0.019	1 (T. pH)		NN	NN	0.06	13	0.12	NN	NN		6-25	NN	NN	>5.5	NA	6.5-9.0	6.5-9.0	NN	NN	NN	NN	NN	NN		GPAL	
		-	40.02	0.63	<0.0014	40.02				40.05	<0.05	0.07	14.6			-10			10.10	13.14	8.23	8.38	126	338	267	6.8		111		Back-1	
			0.02	0.60	6 40.0010	40.02				40.05	<0.05	0.07	14.6			-10			10.07	13.03	8.21	8.37	126	341	266	7.2		107		Back-2	
			0.070	26.0			T	2.90	<1.00	40.20	<0.02	<0.10	225	2.89		3081.00			ŀ								13			900V-90	İ
			0.050	38		14		- 40.50	<1.0	0.01	40.20	0.12	237	2.20		7438.00		1042				7.04	456.1		1,870	12.0	12	722	-	Die-unc	
			0,300	36.0		33.0		0.46	6.1	40,20	<0.02	40,10	188	2.35				086				7.75	609.2		1,780	24.0	174	142		- Aug-su	A DA
				30.3									119									6.94			1,380	18.5			1	76-230	N . 67
				37.5		27.7																				14.0				1100-82	200 - 200
				34.5		25.1	200																			10				on-April	DUT-FX
ŀ	c			26.5	0.021	23.19	~ ~	ŀ					8/1							16.0	5.43	0.4/		1040	10.00	4		000	200	Challer	201111
	200			22.0		30.2	200						104			ŀ					0.0	0.58		DEGL	14/0	1		ORC	002	Ottop	These of
	22		0.00	2.77	0.0000	0.01	004			40.05	40.05		90.4			ŀ				0.03	0.70	20.0	520	A701	1000	1000		000	202	1942 - 1945	20
	CIL		0.16	31.2	0.0000	0.000	100			40.05	40.05		071			ŀ				14.0	02.0	0,40	232	1120	1400	110	4	+00	202	00000	000000
c			0.44	21.0	0.00000	4.02	207			CU.U5	0.07		11/							0.1	0.71	0.74	775	Caci	1303	1360		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	660	Accession of the second	Max-D5
•	COL		6	24.0	0.01	21./	7 10			Q.U2	40.05	CU.US	BUI						4.10	10.00	07.0	0.00	400	1014	1010	1300	10		250		S0-1-0
			0.00	10.4	19100	2.11	17 0			CU.US	0.05	0.11	00.0	0 2 0					2010	2.00	10.00	1.10	7 10	200	673	1060	-	410	81A		Nov-05 C2/RT
		>	V.01	13.0	20.0.0	0.010	180			CU.US	4.05	-0.UD	91.9	010		-	-		-010	1.4	7 44	1.46	CV 4	Cel	801	1240	122		566		May-06
·	-	176	1.00	0.74	20.1	0.028	107			40.00	0.00	0.09	200	120					4114	374	150	R.7	7 57	100	1445	1340	16.4		531	and the second s	Oct-05
	-																												DRY		Dc1-07
	190	3		201	254	0.020	230	-		10.00	0.00	0.00	000	010	-		CAT			26	15.2	848	7 15	548	1590	1330	13.2		571		Oc1-08

Codum
 Patameter in bold ted represents concentration above the National Deviction Limit for al Natione sampling event, for al Natione poundwater sampling location
 Social
 Patameter in a stated cell represents a concentration above one or more applicable citerion for al National ampling event, for al Natione poundwater sampling location

Table C-6: Analytical Results for Groundwater - Metals Parameters Closed Zwick's Island Landfill, Belleville, ON

03-1182-507

Paramotor	Units	Table 3	PWQO	GPAL	Back-1	Back-2	May-80	Jun-90	Aug-90	Doc-97	Duc-99	May-00	Jul-03	Oct-03	May-04	Oct-04	May-05	Oct-05	Nov-05 C2/R1	May-06	Oct-06	Oct-07	Oct-08
Aluminum	mg/L	W	f(pH) 0.015 - 0.075	f(pH, Ca, DOC) 0.005 - 0.1	0.012	0.014	<0.05	<0.05	0.029	•			0.00909	0.0097	0.00887	0.0119	0.00165	0.00366	0.00392	0.00183	0.00815	DRY	0.006
Antimony	mg/L	16	0.02	W									<0.00153	< 0.00153	<0.00153	<0.00153	<0.00153	<0.00150	<0.00150	<0.001	<0.001		
Arsenic	mg/L	0.480	0.005	0.0050	<0.003	<0.003							0.00253	0.00196	0.00092	0.00160	0.00115	0.00168	0.00099	<0.0006	0.00133		<0.003
Barium	mg/L	23	W	W	0.035	0.034	0.411	0.411	0.420	0.053			0.461	0.544	0.345	0.458	0.277	0.443	0.327	0.432	0.422		0.475
Beryllium	mg/L	0.053	f(hard) 0.011 - 1.1	W	<0.001	<0.001	<0.0005	<0.0005	<0.00003		·		<0.00184	<0.00184	<0.00184	<0.00184	<0.00184	<0.0010	<0.0010	<0.001	<0.001		<0.001
Bismuth	mg/L	NN	W	W	<0.002	<0.002		•					<0.00033	<0.0071	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0005	<0.0005		<0.002
Boron	mg/L	50	0.2	W	0.013	0.013	0.269	0.262	0.405				0.229	0.348	0.144	0.204	0.223	0.749	0.176	0.195	0.231		0.241
Cadmium	mg/L	0.011	f(hard) 0.0001 - 0.0005	0.000017	<0.00005	<0.00005	<0.005	<0.005	0.0039	<0.001	•	•	<0.00067	<0.00067	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0002		<0.00005
Calcium	mg/L	W	W	W	42.8	42.8	162	148	202					·	178	181	178	164	128	174	160		178
Chromium	mg/L	2	0.0099	0.0099	<0.003	<0.003	<0.01	<0.01	0.0007	<0.01			0.00167	0.00936	0.00076	0.00492	0.00337	0.0045	0.00399	0.00132	0.00324		0.005
Cobalt	mg/L	0,100	0.0009	W	<0.0005	<0.0005	<0.05	<0.05	0.003		·		0.00148	0.00177	0.00130	0.0015	<0.00090	0.0013	0.00115	0.00136	0.00105		0.002
Copper	mg/L	0.023	f(hard) 0.001 - 0.005	f(alk) 0.002 - 0.004	<0.002	<0.002	<0.01	<0.01	0.0012	<0.05		•	0.00173	<0.00078	0.00429	<0.00078	0.00703	0.00102	0.0009	<0.0008	0.00111		<0.002
Iron	mg/L	W	0.3	0.3	0.025	0.021	42.2	39.2	28.5	44.5	1.34	0.37	43.300	46.100	43.1	42.5	2.79	36.4	27.7	49.3	18		41.8
Load	mg/L	0.032	7(hard) 0.001 - 0.005	f(alk) 0.001 - 0.007	<0.001	<0.001	<0.05	<0.05	<0.003	<0.005	•		<0.00044	<0.00044	0.00079	<0.00044	<0.00044	<0.00044	<0.00044	<0.0005	<0.0005		<0.0005
Magnesium	mg/L	W	WN	WN	4.69	4.76	23.1	20.9	24.9						19.3	19.8	19.2	18.3	0.0122	19.3	16.6		17.4
Manganese	mg/L	W	WN	W	0.020	0.021	0.30	0.28	0.173	0.33	0.3	0.30	0.258	0.254	0.290	0.258	0.319	0.218	0.18	0.269	0.103		0.272
Mercury	mg/L	0.00012	0.0002*	0.000026	<0.00002	<0.00002							<0.0001	<0.00005	<0.0001	<0.0001	<0,00010	<0.00002	<0.00002	<0,00005	<0.00005		<0.00002
Molybdenum	mg/L	7.3	0.04	0.073	<0.002	<0.002	<0.2	<0.2	<0.01				<0.00047	<0.00047	<0.00047	<0.00047	<0.00047	<0.00050	<0.00050	<0.0005	<0.0005		<0.002
Nickel	mg/L	1.6	0.025	7(alk) 0.025 - 0.15	<0.003	<0.003	<0.05	<0.05	<0.003	•	•	•	0.00121	0.00097	0.00110	0.00086	0.00089	0.00086	0.00124	0.00086	<0.0006		<0.003
Phosphorus	mg/L	WN	W	W		•	1.0	0.9	0.27	-	•						•	•					
Potassium	mg/L	W	W	W	1.19	1.22	15.8	13.4	20.9						12.2	14.5	11.9	12.2	10.3	10.8	12.1		13.4
Selenium	mg/L	0.050	0.1	0.0010	<0.0008	<0.0008							0.00292	0.00264	0.00298	0.00417	0.00198	0.00168	0.0024	0.00147	0.00146		<0.0008
Silicon	mg/L	W	WN	W	2.16	2.11	8.37	8.09	6.28						10.3	12.3	8.55	11	8.67	10.300	6.350		13.4
Silver	mg/L	2100.0	TUUU.U	100001	<0.0001	<0.0001	<0.005	<0.005	<0.0003		ŀ		<0.00070	<0.00070	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001		<0.0001
Stocking	mg/L	NA	NN	WW	8.58	8.73	121	116	88.3	ŀ	ŀ			65.0	56.9	71.9	60.1	51.1	40.8	51.3	55.8		45.7
Strontium	mg/L	NN	VV	VV	C.120	0.123	1.56	1.58	1.45		•		1.270	1.290	1.05	1.26	1.11	1.09	0.857	1.08	0.451		1.00
Inditium	mg/L	0.400	0.0003	0.0008	<0.0003	<0.0003		ŀ	ŀ				<0.00036	<0.00036	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.0003		<0.0003
Inonum	mg/L	NN	WN	W		ŀ	<0.05	<0.05															
Tin	mg/L	WN	NN	W																			
Titanium	mg/L	W	W	W	<0.002	<0.002	<0.005	<0.005	0.0025		•		<0.00054	0.00079	<0.0020	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005		<00 0>>
Uranium	mg/L	NN	0.005	WN							•						•						10.002
Vanadium	mg/L	0.200	0.006	W	<0.002	<0.002	<0.005	<0.005	0.0041				0.00093	0.0007	<0.00040	0.00079	<0.00040	<0.00040	0.0007	<0.0004	0.0006		<0.002
Line	1/6w	1.1	0.02	0.03	<0.005	<0.005	0.05	0.04	0.0061	0.08			0.0438	0.00346	0.00613	0.0110	0.03	0.0074	0.009	0.00798	0.0093		<0.005
Lirconium	mg/L	W	0.004	W			<0.02	<0,02		·	•						•	•					
Hardness	mg CaCO3/L	W	WN	W	126	126		456.1	609.2						525	532	522	485	369	514	468		516 .
maninity as cacoo	mgr	VW	%C75	VV	111	107	ŀ	722	742				600	598	566	584	550	550	416	566	531		571

 OTES:

 Table - 2 Standard taken from the Near-Patable Cound Water standards in Table 3 of the "Seal, Ground Water and Sedment Shundards for Use Luder Part XV 1 of the Environmental Protection Acf

 Provide Cound Table - 2 of the AVEE : Provincial Water Couldy Objectives". July 1004, upstand Coulder 1588, reprint 168

 Content taken from Table 2 of the AVEE : Provincial Water Couldy Objectives". July 1004, upstand Coulder 1588, reprint 169

 Content taken from Table 2 of the AVEE : Provincial Water Couldy Objectives". July 1004, upstand Coulder 1588, reprint 169

 Vision Could taken from Table 2 of the AVEE : Provincial Water Couldy Objectives". July 1004, upstand Coulder 1588, reprint 169

 Vision Could taken from Table 2 of the AVEE : Provincial Water Couldy Objectives". July 1004, upstand Coulder 1588, upstand 169

 Vision Could taken from Table 2 of the AVEE : Provincial Water Couldy Objectives". July 1004, upstand Coulder 1688, upstand 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Section 169

 Vision Table Sectin 16

• Parameter in bold test represents concentration above the Method Detection Unit for at least no sampling event, for at least ore groundwater sampling location • Parameter in a builded cell represents a concentration above one or more applicable criterion for at least one sampling event, for at least one groundwater sampling location

Golder Associates

8 of 9

		The second second	10000	Carlo Carlo	2008 Backgro	bund															
Parameter	Units	Table 3	PWQO	GPAL	Back-1 Ba	ack-2 M	5y-50 Jun-90	Aug-98	Dec-37	Dec-99	May-00	Jul-03	Oct-03	35ay-04	Oct-04	May-05	(het-05	May-06	001-08 0	Jet-07 0.	101-95
Aldrin	H0/L	0.2	0.001	NN			- 0.029	0.0076						•	<0.02	•	•	•	•	DRY	•
Alpha-BHC	HO/L	NN	NN	NN			- 0.006	0.0049							<0.01			•	•		•
Beta-BHC	Hg/L	NN	NN	NN		•	- <0.0020	<0.0010							<0.01						•
Delta-BHC	1/6rl	NN	NN	NN			- <0.0010	0.0033							<0.01	•					•
Gamma-BHC (Lindane)	HQ/L	NN	0.01	0.01		•	- <0.0010	<0.0005							<0.05	•	•	•	•	•	•
Chlordane	h0/L	0.04	0.06	NN			- <0.0200	0.015							<0.10						•
4,4-000	HO/L	0.0		NN		•	<0.0020	0.0038							<0.05	•			•		•
4,4"-DDE	h0/L	20		WN			<0.0010	<0.0005							<0.05						•
4,4'-DOT	H0/L	0.05		W		•	- <0.0020	<0.0010							<0.05						•
2,4-DOT	hol	0.05		NN		•	<0.0020	<0.0010							<0.05		•	•	•		•
Dieldrin	h0/L	0.02	0.001	NN		•	- <0.0010	<0.0005						•	<0.02			•	•		•
Endosultan I	HQ/L	0.50	- 0.003*	000			- <0 0020	<0.0010							<0.05			•	•	•	•
Endosultan II	hol	0,56				•	· <0.0020	<0.0005							<0.05						•
Endosultan Sulphate	hol	NN	NN	NN		•	- <0.0020	<0.0010							<0.01				•		•
Endrin	hol	0.05	0.002	NN			- <0.0020	<0.0010							<0.04						•
Endrin Aldehyde	HO/L	W	NN	NN			- <0.0040	<0.0020							<0.01					•	•
Heptachlor	holr	0.04	0.001-	NN		•	- <0.0010	<0,0005							<0.03						•
Heptachlor Epoxide	holr	0.0		NN		•	- <0.0010	<0.0005							<0.05						•
Methoxychior	h0/L	03	0.04	NN		•	- <0.0030	<0.0015							<0.05						•
Mirex	hol	NN	0.001	NN		•	- <0.0020	<0.0010							<0.05	•					•
Toxaphene	uol	NN	0.008	NN		•	<0 0000	100300							000	•					

GPAL = Guideline taken from the CCNE "Canadian Water Guidky Guidelines for the Protection of Aqu December 2003	GAA Guidence Lawn from the CCVE "connotain Warnach Coulty Coursely Organized to the Protocol of Aque December 2003 Beschund and Beschund and ange developed from background surface water tampies. Comparison for 2008 in	fan ' restruction frants transit i These and is a second some and a second so is
GPAL e- Guideline taken from the CCNE: "Canadian Water Quality Guidelines for the Protection of Aqu December 2003	CPAL 9 Guide/se Laka from the CCNE "Canadian Water Guility Guidelines for the Protection of Aqua Decomber 2003 2008 Background = Background angle developed from background surface water samples. Comparison for 2008 /	
	2008 Background = Background range developed from background surface water samples. Comparison for 2008 r	GPAL = Guideline taken from the CCME "Canadian Water Quality Guidelines for the Protection December 2003

= Underlaned va = Not analyzed nagenta print represent a Method Detection Limit above one or more app values.

Convention and Audio and Dealerin
 Convention and Provide a Conventional of Audio and Dealerin
 Convention and the sum of Audio and Dealerin
 Convention and the sum of Audio and Dealerin
 Composition and the Sum of Audio and Television
 Composition
 Composition and the Sum of Audio and Television
 Composition
 Com

Substantiane Lp2.1 N/L 700 Sign/Charles Lp2.1 N/L 50 600 Consonenthaue Lp2.1 3.7 0.9 0.9 Consonenthaue Lp2.1 3.7 0.9 0.9 Consonenthaue Lp2.1 3.7 0.9 0.9 Consonenthaue Lp2.1 3.00 N/V N/V Consonenthaue Lp2.1 3.00 N/V N/V Consonenthaue Lp2.1 3.00 N/V N/V Consonenthaue Lp2.1 50.000 40.1 50.000 40.1 Consonenthaue Lp2.1 50.000 40.1 50.000 40.1 50.000 20.0<	NV NV	-0.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	4017 4022 4022 4022 4022 4022 4022 4022 402	<10.0 <10.0 <10.0 <25.0 <5.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	 	- 40.2 -						0.17 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	00.14 00.23 00.22 00.24 00.24 00.26 00.07 00.05	-0.14 -0.23 -0.22 -0.24 -12 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.24 -0.24 -0.23 -0.24 -0.23 -0.23 -0.24 -0.23 -0.24 -0.23 -0.24 -0.24 -0.23 -0.24 -0.26 -0	 40.4 40.17 40.2 40.61 40.4 40.4 40.2 40.2 40.3 40.2 40.2 40.2 40.3 	402 402 402 402 402 402 402 402		-0,4 -0,2 -0,2 -0,2 -0,2 -0,2 -0,2 -0,2 -0,2
Sign/Chole Jg/L 0.5 900 scruonmitume Jg/L 0.1 0.0 900 Chorenthame Jg/L N/V N/V N/V Chorenthame Jg/L N/V N/V N/V Trachsortizame Jg/L N/V N/V N/V Vectore Jg/L 0.06 40 0.0 100 100 200 200 200 200 200 200 200 <td>NV NV NV NV NV NV NV NV NV NV NV NV NV N</td> <td>40,17 40,2 40,2 40,4 40,4 40,3 40,3 40,3 40,3 40,3 40,3</td> <td>40,17 40,2 40,2 40,2 40,2 40,3 40,3 40,3 40,3 40,3 40,3 40,2 40,2 40,2 40,2 40,2 40,2 40,2 40,2</td> <td><10.0 <25.0 <5.0 <5.0 <10.0 <10.0 <1.0 <1.0</td> <td> </td> <td>- 40.2 - 40.2 - 60.2 - 70.2 - /td> <td>· · · · · · · · · · · ·</td> <td></td> <td></td> <td>+++++++++++++++++++++++++++++++++++++++</td> <td></td> <td>0.17 0.6 0.6 0.6 10 10 0.2 10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.</td> <td>0.17 0.23 0.24 0.24 28 28 28 20 28 20 28 20 28 20 26 20 27 20 26 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20</td> <td>40,17 40,22 40,22 40,22 12 12 40,200</td> <td>40.17 40.2 40.2 53 40.2 40.2 40.2 40.2 40.2 40.2</td> <td></td> <td></td> <td>40.17 40.2 40.2 40.2 40.2 40.2 40.2 40.2</td>	NV NV NV NV NV NV NV NV NV NV NV NV NV N	40,17 40,2 40,2 40,4 40,4 40,3 40,3 40,3 40,3 40,3 40,3	40,17 40,2 40,2 40,2 40,2 40,3 40,3 40,3 40,3 40,3 40,3 40,2 40,2 40,2 40,2 40,2 40,2 40,2 40,2	<10.0 <25.0 <5.0 <5.0 <10.0 <10.0 <1.0 <1.0	 	- 40.2 - 40.2 - 60.2 - 70.2 -	· · · · · · · · · · · ·			+++++++++++++++++++++++++++++++++++++++		0.17 0.6 0.6 0.6 10 10 0.2 10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	0.17 0.23 0.24 0.24 28 28 28 20 28 20 28 20 28 20 26 20 27 20 26 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	40,17 40,22 40,22 40,22 12 12 40,200	40.17 40.2 40.2 53 40.2 40.2 40.2 40.2 40.2 40.2			40.17 40.2 40.2 40.2 40.2 40.2 40.2 40.2
Species April 3.7 0.9 Species April 3.7 0.9 Species April 3.7 0.9 Species April 3.7 0.9 Tradeord/acomethane Mail NV NV NV April 3.00 NV NV NV Tradeord/acomethane Mail 3.00 NV NV Columentanea Mail 3.00 NV NV Tradeord/acomethane Mail 3.00 Moil 4.00 5.000 5.00	NV NV NV NV	402 402 402 402 402 402 402 402	600 600 600 600 600 600 600 600 600 600	<10.0 <25.0 <5.0 <25.0 <10.0 <10.0 <1.0 <1.0	 · 0.5	 40,4 40,2 40,2 40,2 40,2 40,0 <li< td=""><td></td><td></td><td></td><td>+++++++++++++++++++++++++++++++++++++++</td><td></td><td>0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2</td><td>0.23 0.24 28 0.24 0.24 0.24 0.24 0.28 0.24 0.28 0.12 0.05</td><td>40.23 12 12 40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20</td><td>40,2 40,2 40,2 40,2 40,2 40,2 40,2 40,2</td><td></td><td></td><td>8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td></li<>				+++++++++++++++++++++++++++++++++++++++		0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.23 0.24 28 0.24 0.24 0.24 0.24 0.28 0.24 0.28 0.12 0.05	40.23 12 12 40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20	40,2 40,2 40,2 40,2 40,2 40,2 40,2 40,2			8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Subrowthame Lig1 N/V N/V Fractive/Loome/tune Lig1 S.300 N/V Kestens Lig1 S.300 N/V Kestens Lig1 S.300 N/V Tradice/Loome/tune Lig1 S.300 N/V Destacementame/LoopLine Lig1 S.300 N/V Destacementame/LoopLine Lig1 S.000 100 Marthu-Fabry Env Lig1 S.000 200 Marthu-Fabry Env Lig2 S.000 200 Stactoreathame Lig2 S.000 200 Stactoreathame Lig2 S.000 200 Stactoreathame Lig2 S.000 200 Stactoreathame Lig2 S.000 200 Stactoreathame	NV 10,000 NV	66666666666666666666666666666666666666	6000 2000 2000 2000 2000 2000 2000 2000	<25.0 <25.0 <10.0 <10.0 <10.0 <10.0 <10.0	 - 0.5 - 0.5							0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.22 28 0.24 0.26 0.26 0.07 0.007	40.22 12 40.20 40.20 40.20 40.20 40.20	0.61 <0.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2			8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Endotraficamentane Jan 2 NV NV Vactore Jan 2 Sou NV Labolizamentane Jan 2 Sou NV Labolizamentane Jan 2 Sou NV Databarenase Machine Jan 2 Sou NV Vactore Machine Jan 2 Sou NV Vactore Machine Jan 2 Sou NV Vactore Machine Jan 2 Sou NU Nucley Ellevice Machine Jan 2 Sou NU Sou Nucley Ellevice Machine Sou Sou<	10,000		60 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		 <1.0 <1.0 <0.5 , 0.5 , 0.5	- 40.02							0.24 28 0.12 0.05 0.05	40.24 12 40.20 40.20 40.20 40.20	40.2 40.2 40.2 40.2			8 8 8 8 8 8 2 2 3 2 5 4
vestore JA 3,000 VVV 1,1 Controcentaries (Dichlarod g) 0,00 400 500 Dichicomethanis (Michlywei g) 1,00 100 100 100 Dichicomethanis (Michlywei g) 1,00 0,00 200 200 Mathyl-Eshlyr Einer Lip2 1,000 200 200 Mathyl-Eshlyr Einer Lip2 9,000 200 200 Mathyl-Eshlyr Kolsne Lip2 9,000 200 200 Mathyl-Eshlyr Kolsne Lip2 1,70 200 200	10,000 NV	000 000 000 000 000 000 000 000 000 00	66666666666666666666666666666666666666	<10.0	 	- 40.2				++++++		00000000000000000000000000000000000000	28 (0,12 (0,12 (0,07 (0,05) (0,05)	12 40.20 40.20 40.20 40.20	<pre>40.2 40.2 40.2 40.2 40.2</pre>			8 8 8 8 8 2 8 8 8 8 2 8 8 8 8 8 8 8 8 8
1. Obchyczałkwa (Dochosou Jac) 0. 46 40 Dabrzomałkam (Abcharka Jac) 5000 100 Dabrzomałkam (Abcharka Jac) 5000 100 Variani - 1.2: Dichlarowstawa jac) 100 200 Variani - 1.2: Dichlarowstawa jac) 100 200 Variani - 1.2: Dichlarowstawa jac) 50:000 200 Variani - 1.4: Obcharowstawa jac) 50:000 200 <tr< td=""><td>NV 98,1 10,000 NV NV NV</td><td>002 002 002 002 002 002 002 002 002 002</td><td>0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td><2.5</td><td> <0.5 , 0.5</td><td></td><td></td><td></td><td></td><td>+++++</td><td></td><td>866668</td><td>0.12 0.26 0.07 0.05</td><td>40.20 40.20 40.20</td><td>80.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 3</td><td></td><td></td><td>60.2 2023</td></tr<>	NV 98,1 10,000 NV NV NV	002 002 002 002 002 002 002 002 002 002	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<2.5	 <0.5 , 0.5					+++++		866668	0.12 0.26 0.07 0.05	40.20 40.20 40.20	80.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 3			60.2 2023
Jubiconnethane (Methylane) Jup(L) 50 000 100 Turner-12: Dicklorostitivine Jup(L) 50 000 200 Mathyl-Bully Ethere Jup(L) 60 000 200 Mathyl-Bully Ethere Jup(L) 50 000 200 Mathyl-Bully Katore Jup(L) 50 000 200 Mathyl-Bully Katore Jup(L) 50 000 400 Mathyl-Bully Katore Jup(L) 70 200	98.1 10,000 N/V N/V	40.2 40.2 40.2 40.2	40.2 40.2 40.2	<10.0 <1.0 <1.0	 <1.0 - - -	<0.2 <0.07 <0.06						00223	0.26 0.07 0.05	40.30 40.20 40.30	40.2 0.2			6.2 2
James 1.2- Dic hiloroestheme ug/L 100 200 Machy-L-Bulk Einer ug/L 80.000 200 1,1-Dic-hioroesthame ug/L 9.000 200 Methyl Einyl Kotone ug/L 50.000 400 cs-1.2- Dichloroethame ug/L 70 200	NV NV NV	0.2 0.2 0.2	<0.2 <0.2 <0.2		 - 0.2	<0.07						8 6 6 6 9 3 2 2 9 3 2 2	40,12 40,07 40,05	40.20 40.30	40.2 40.2			8 A
Justry-F-Buryli Ether Japl 50,000 200 1.1-Dichloresthane Japl 50,000 400 400 Methyl Ethyl Kelores Japl 50,000 400 400 400 cs-1.2-Dichloresthane Japl 70 200 400	10,000 N/V N/V	<0.2 <0.2	<0.2 (0.2		 . 0.5	- <0.06				++-		0.000	40.07 40.05	40.20	40.2 40.3	6.2 3	ŀ	6.2
1.1-Dichloroethane µg/L 9,000 200 Methyl Ethyl Ketone µg/L 50,000 400 cis-1.2- Dichloroethene µg/L 70 200		<0.9 (0.2	40,9 20,2		 - 0.5	- <0.06				+		0.0	40.05	<0.30	<0.3	40.3		
Methyl Ethyl Ketone ug/L 50,000 400 cis-1,2- Dichloroethene ug/L 70 200	NN NN	40.9	<0.9									0.9	74 00				ŀ	40.3
cis-1,2- Dichloroethene Hg/L 70 200	W	<0.2	<0.2		-								0.14	<0.90	<0.9	<0.9		<0.9
						<0.07						0.2	<0.16	<0.20	<0.2	<0.2		40.2
Chloroform µg/L 430 NV	1.8	<0.2	<0.2	<1.0	<0.2	<0.1					•	0.2	<0.06	<0.20	<0.2	<0.2		40.2
1.2-Dichloroethane µg/L 17 100	100	<0.2	<0.2	<1.0	<0.2	<0.1				_		6.2	<0.07	<0.20	<0.2	<0.2		40.2
1,1,1-Trichloroethane µg/L 200 10	W	<0.3	<0.3	<1.0	0.6	<0.06				_		0.3	<0.08	<0.30	<0.3	<0.3		40.3
Carbon Tetrachloride [µg/L] 17 NV	13.3	<0.2	<0.2	<1.0	<0.2	<0.04			-			0.2	<0.2	40.20	<0.2	40.2		40.2
Benzene µg/L 1,900 100	370	<0.2	<0.2	9.7	9.6	6.60			2			1.4	3.4	2.2	3.4	1.1		2.9
1.2-Dichloropropane µg/L 9.3 0.7	W	<0.2	<0.2	<1.0	<0.2	<0.03		-				0.2	c0.12	<0.20	40.2	40.2		40.2
Trichloroethylene µg/L 50 20	21	<0.2	<0.2	<1.0	<0.2			-	-			6.2	<0.05	<0.20	<0.2	0.32		40.2
Bromodichloromethane µg/L 50,000 200	W	<0.2	<0.2	<1.0	<0.2	<0.2						0.2	<0.06	<0.20	<0.2	40.2		<0.2
dis-1,3-Dichloropropene µg/L 3.8 NV	NN	<0.2	<0.2	~2.5	<0.5	<0.04		-	-		ŀ	0.2	<0.04	40.20	<0.2	40.2	ŀ	40.2
Methyl isobutyl Ketone µg/L 50,000 NV	W	<0.3	<0.3									0.3	<0.38	<0.30	<0.3	<0.3		40.3
trans-1.3-Dichloropropene µg/L NV 7	W	<0.3	<0.3	<2.5	<0.5	<0.03						0.3	40.06	40.30	40.3	40.3		40.3
1,1,2- Trichloroethane µg/L 16,000 800	W	<0.2	40.2	<2.5	<0.5	<0.07		.			ŀ	0.2	40.07	40.20	40.2	40.2		40.Z
Toluene µg/L 5,900 0.8	2.0	<0.2	<0.2	0.8	1.8	<0.09			0.2	21		c0.2	0.28	<0.20	0.64	<0.2		0.36
2-Hexanone µg/L NV NV	NN	<0.3	<0.3									<0.3	<0.70	<0.30	<0.3	<0.3		40.3
Dibromochloromethane µg/L 50,000 40	NN	<0.1	<0.1	<5.0	<1.0	<0.3				_	•	6.1	<0.25	<0.10	<0.1	<0.1		60.1
1.2-Dibromoethane (Ethylene µg/L 3.3 5	W	<0.2	<0.2								•	c0.2	<0.07	<0.20	<0.2	<0.2		<0.2
Tetrachloroethene ug/L 5.0 50	111	<0.2	<0.2	2.5	<0.5	<0.04					·	6.1	<0.07	<0.10	<0.1	-0.1		-0.1
1,1,1,2-Tetrachloroethane µg/L 6.0 20	WN	<0.1	<0.1								•	6.1	<0.13	<0.13	<0.1	-0.1		40.1
Chlorobenzene µg/L 500 15	1.3	<0.1	<0.1	19.6	24.0	13.2				_	•	16	26	25	30	12		21
Ethylbenzene µg/L 28,000 8	90	<0.1	<0.1	1.6	0.9	<0.1			6	05	•	<0.1	<0.1	<0.10	<0.1	<0.1		<0.1
m & p Xylenes µg/L 5,600 32	NN	<0.2	<0.2							-		0.3	<0.29	0.12	0.28	<0.2		<0.2
Bromoform µg/L 840 60	W	<0.1	<0.1	<10.0	<2.0	€.1					·	6.1	<0.36	<0,10	<0.1	-0.1		40.1
Styrene µg/L 940 4	72	<0.1	<0.1								•	60.1	<0.03	<0.10	<0.1	-0.1		6.1
1,1,2,2-Tetrachloroethane µg/L 22 70	WN	<0.1	<0.1	<5.0	<1.0	<0.2						6.1	<0.19	<0.20	<0.1	<0.1		-0.1
o Xylenes µg/L 40	NN	<0.1	<0.1						-	-		0.2	0.12	<0,10	0.11	<0.1		<0.1
1,3-Dichlorobenzene µg/L 7,600 2.5	150	<0.1	<0.1	<1.0	<0.2	<0.2				-		6.1	<0.16	<0.10	<0.1	<0.1		<0.1
1,4-Dichlorobenzene µg/L 7,600 4	26	<0.1	<0.1	8.70	13.80	7.40			-		•	7.2	6.3	6.9	8.8	2.9		2.9
1,2-Dichlorobenzene µg/L 7,600 2.5	0.70	<0.1	<0.1	0.7*	1.0	0.7				-		<0.1	0.43	<0.10	<0.1	0.2		40.1
1,2,4-Trichlorobenzene µg/L 500 0,5	24	<0.3	<0.3							-	•	0.3	<0.10	<0.30	<0.3	<0.3		<0.3
1.3- Dichloropropene ug/L 3.8 NV	WN	<0.30	<0.30							_	•	<0.5	<0.1	•				<0.30
m, p & o Xylenes µg/L 5,600 72	WN	<0.2	<0.2	20.3	21.1	1.2		.	0.3	33	ŀ	0.5	0.39	0.12	0.39	<0.2		<0.2
2-Chloroethylvinylether µg/L NV NV	NN			•		<0.06				-		•	•			•	•	

	1.00						
	NN	W	W	24	0.70	26	UCL
NOTES:		<0.2	<0.30	<0.3	<0.1	<0.1	<0.1
Table 3 PWQO GPAL Beckground *		<0.2	<0.30	<0.3	<0.1	<0.1	<0,1
= Standard t Environment = Objective t = Guideline t = Backgroun = No value & = No value & = Underlined		20.3			0.7 *	8.70	<1.0
aken from the I al Protection / aken from Tab aken from the aken from the aken from the of range develor of parameter ir parameter in mag							
Non-Potable Gre cct ² (March 9, 20 CCME *Canada applicable crite antpanying meth		21.1			1.0	13.80	SU.2
ound Water sta (04). E "Provincial W an Water Ouali pound surface na od detection lir sent a Method	<0.06	1.2			0.7	7.40	<0.2
andards in Tabi Vater Quality C Vater Quality C Gy Guidelines 1 And Samples Detection Limi							
le 3 of the "So bjoctives", Juli or the Protection Comparison						•	
il, Ground Wat y 1994, update on of Aquatic L for 2008 result		0.33					
er and Sedime of October 106 site", Summany its only. See to be criterion val							
nt Standards i 8, reprinted F Table, Update out for details		0.5	<0.5	<0.3	<0.1	7.2	<0.1
kor Use Under obruary 1999 a December 20		0.39	<0.1	<0.10	0.43	6.3	<0.16
Part XV.1 of th		0.12		<0.30	<0.10	6.9	<0.10
ā		0.39		<0.3	<0.1	8.8	-0.1
		<0.2		<0.3	0.2	2.9	-0.1
						Н	r

= Dotocted at a level bolow stated Method Detec 12.7 = Shaded cells with bold text represent an excee

applicable criterion values

0.04 = Values in bold, red text indicate an exceedance of the 2008 background range. Comparison for 2008 results only. See text for details

Vinyl Chloride Vinyl Chloride • Parameter in bold for represents concentration above the Method Delection Limit for at least one sampling event, for at least one groundwater sampling location Parameter in a studied cell represents a concentration above one or more applicable oriterion for at least one sampling event. for at least one groundwater samplin location. r sampling

Water Quality Review on Conditions at the Picton Drinking Water Treatment Plant

Prepared by Quinte Conservation

This supplement to the conditions report was prepared to compare contaminants found in groundwater samples from the closed Delhi Park landfill and sediment samples close to the landfill with raw water samples at the Picton Drinking Water System. The study team was interested in determining if any of the contaminants found in the landfill are showing up in tests of raw water or if they were missed because they were not being routinely tested. Also, the contaminant conditions were checked in samples collected from Marsh Creek, storm sewer outfalls and from the Picton Sewage Treatment Plant effluent to see if the same contaminants could be found in other sources.

Review of Groundwater Contaminants from the Landfill

Water chemistry results assessing the impacts of the closed Delhi Park Waste Disposal Site in Picton were compared to Table 2 potable groundwater condition standards for the Source Protection Conditions approach. Table 2 standards are designed to be used under Part XV.1 of the *Environmental Protection Act*. To determine the conditions of the closed Delhi Park Waste Disposal Site all available reports and data were reviewed. If any of the contaminants were detected in raw at the Picton Drinking Water System (DWS) then it is likely that human activities have been contaminating the source water. The closed landfill of the closed Delhi Waste Disposal site is just one potential source of contamination along with the effluent coming from storm sewer outfalls and the Picton Sewage Treatment Plant.

In 1989 Water & Earth Science Associates Ltd performed additional monitoring of the closed Delhi Park landfill site (WESA 1989). The study included advancement of eight monitor wells, of which two wells had contamination exceeding Table 2 standards for six parameters. It is important to note that limited testing was completed on the remaining six wells. Contaminants exceeding were Chloroform, 1,1 Dichlorethylene (Vinylidene Chloride), 1,1 Dichlorethane, Ethylbenzene, Trichlorfluoromethane, and 1,4 Dichlorobenzene (Table 1). Based on the technical rules and discussion within section

3.8 of the Conditions report, the closed Delhi Park landfill site is a Condition under the Quinte Region Source Protection program.

Table 1: Contaminants that exceeded Table 2 potable groundwater condition standards in groundwater samples taken by Water and Earth Science Associates Ltd at the closed Delhi Park landfill site (WESA 1989).

Contaminant	Table 2 Potable Groundwater Condition Standards	Unit	Well #	P1-1	P1-2	P2-1	P2-2	P3-1	P3-2	P4
1,1 Dichlorethane	5	ug/l	-	-	7.9	-	-	-	-	-
1,1 Dichlorethylene	1.6	ug/l	-	-	2.8	-	-	-	-	-
1,4 Dichlorobenzene	1	ug/l	1.2	-	1.2	-	-	-	-	-
Chloroform	7	ug/L	9.7	-	90.7	-	-	-	-	-
Ethylbenzene	2.4	ug/l	12	-	12	-	-	-	-	-
Trichlorfluoromethane	150	ug/l	-	-	540	-	-	-	-	-

The study team recognized that no threats were identified at the DWS through the Ontario Drinking Water Source Protection Issues Approach and was therefore not looking to determine whether the contaminants exceeded drinking water quality guidelines. However, raw water samples were reviewed to determine whether they are present. All six indicator parameters except for Trichlorfluoromethane were monitored at the Picton DWS through the Ontario Drinking Water Surveillance Program up to November 2007. Five groundwater contaminants were detected in raw water at the Picton DWS through the Ontario Drinking Water Surveillance Program (DWSP) (see Table 2).

Table 2: Summary statistics for the groundwater contaminants observed in raw water samples taken at the Picton Drinking Water System. Contaminants in bold were detected in raw water.

Contaminants	Unit	Count	Min	Max	Average
1,1 Dichlorethane	ug/l	51	0.05	0.1	0.07
1,1 Dichlorethylene	ug/l	51	0.05	0.10	0.07
1,4 Dichlorobenzene	ug/l	51	0.05	0.1	0.07
Chloroform	ug/l	46	0.10	116	13
Ethylbenzene	ug/l	51	0.05	0.1	0.05

 Trichlorfluoromethane
 no data
 Image: Control of the Environment's Drinking Water Surveillance Program (1991 to 2007)

Review of Sediment Contaminants near Delhi Landfill Site

A review of sediment sample results for the closed Delhi Park landfill site reported in an Environment Canada study revealed that 12 indicator parameters had concentrations greater than their respective Table 1 sediment condition standards (Biberhofer and Dunnett 2006). The sediment standards are designed to be used under Part XV.1 of the *Environmental Protection Act*. Because of their location, the sediment samples reviewed cannot be directly linked to the landfill site, but may better represent ambient conditions in the Picton Bay and Marsh Creek mouth (Figure 1). Nevertheless, the study team investigated sediment sample data and made comparisons to potential sources. The 12 parameters in sediment that exceeded Table 1 sediment condition standards were: Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Silver, Zinc, Fluoranthene, Phenanthrene, and PCB (see Table 3 below). All 12 are monitored at the Picton DWS in the DWSP.

Station			2030	2031	EHD-6
Easting	Table 1 Sediment		330561	329364	328723
Northing	Condition Standards	Unit	4879138	4876486	4875036
Arsenic	6	ug/g	10.9	9.49	<5
Cadmium	0.6	ug/g	0.5	1	1.3
Chromium	26	ug/g	41.8	49.1	52
Copper	16	ug/g	35.3	45.1	215
Fluoranthene	0.75	ug/g			1.11
Lead	31	ug/g	60.3	73	89
Mercury	0.2	ug/g	0.137	0.167	0.647
Nickel	16	ug/g	31.8	46.1	9
РСВ	0.07	ug/g			0.11
Phenanthrene	0.56	ug/g			0.852
Silver	0.5	ug/g	0.25	0.25	11.3
Zinc	120	na/a	151	179	504

Table 3: Contaminants that exceeded Table 1 sediment condition standards in sediment samples taken near the closed Delhi Park landfill site (Biberhofer and Dunnett 2006).

The study team found that 10 of the contaminants in the sediment were also detected in raw water samples at the DWS. These are shown in Table 4.

Table 4: Summary statistics for the sediment contaminants observed in raw water samples taken at the Picton Drinking Water System. Contaminants in bold were detected in raw water.

Contaminants	Unit	Count	Min	Max	Average
Arsenic	ug/l	52	0.24	1.9	1.08
Cadmium	ug/l	52	0.00	0.094	0.04
Chromium	ug/l	52	0.30	9.2	1.73
Copper	ug/l	52	0.50	3.2	1.50
Fluoranthene	ng/L	1	no measurable response (zero)		
Lead	ug/l	53	0.05	1.3	0.36
Mercury	ug/l	27	0.02	0.02	0.02
Nickel	ug/l	52	0.00	6.06	0.85
РСВ	ng/L	33	measurable trace amount		
Phenanthrene	ng/L	1	no measurable response (zero)		
Silver	ug/l	52	0.00	0.05	0.03
Zinc	ug/l	52	0.20	8.9	3.16

Data Source: Ontario Ministry of the Environment's Drinking Water Surveillance Program (1991 to 2007)

Of the 12 sediment and 6 groundwater exceedances, a total of 18 distinct contaminants were found. The summary Table 5 below shows the 15 that were detected in the raw water samples at the Picton intake. There were no data for Trichlorfluoromethane in raw water and the remaining parameters were not detected.
Table 5: Summary of contaminants detected in raw water at the Picton Drinking Water System.

1,1 Dichlorethane	
1,1 Dichlorethylene	
1,4 Dichlorobenzene	
Chloroform	
Ethylbenzene	
Sediment Contaminant	s Detected in Raw Water at Picton Drinking Water System
Arsenic	
Cadmium	
Chromium	
•	
Copper	
Lead	
Copper Lead Mercury	
Copper Lead Mercury Nickel	
Copper Lead Mercury Nickel PCB	
Copper Lead Mercury Nickel PCB Silver	

Other Sources of Contamination at the Intake

Raw water at the intake is drawn from Picton Bay off the Bay of Quinte. The Picton Bay is also fed by several small creeks including Marsh Creek which drains the largest of the watersheds on the southwest. The Picton Sewage Treatment Plant, several large storm outfalls and runoff from the landfill site all outlet into Marsh Creek just upstream of the mouth of the tributary. Any of these could also influence conditions in the raw water. This section provides a review of the three other potential sources for the contamination measured in the raw water.

Marsh Creek

The study team reviewed water quality in Marsh Creek as recorded in the Provincial Water Quality Monitoring Network (PWQMN) for a site at Bridge Street. The groundwater contaminants found in the landfall are not routinely tested in the PWQMN. Of the 12 sediment contaminants only eight are monitored and all eight are detected in water from the creek. The station is located downstream of the landfill site and sewage treatment plant and would experience surface water impacts from the three sources as well as others. See Table 6 below for the results of the analysis of PWQMN data for the 12 sediment contaminants.

Table 6: Summary statistics of sediment contaminants observed in surface water samples taken at the Provincial Water Quality Monitoring Network Site in Marsh Creek in Picton, 1984 to 2010 (Ontario Ministry of the Environment). Contaminants in bold were detected in surface water samples. ¥ = Contaminants exceeding a water quality standard or objective at the Marsh Creek site between 2006 and 2010.

Г

						Water Quality Standards and		0/ Eveneded	
Parameter	Unit	Count	Min	Max	Average	PWQO, 1999	ODWS, 2006	% Exc PWQO, 1999	ODWS, 2006
Arsenic	mg/L	39	0.001	0.004	0.001	0.005	0.025	0	0
Cadmium ¥	ug/L	80	0.004	3.50	0.53	0.5	5	25	0
Chromium	ug/L	88	0.031	63	1.94	8.9	50	2	1
Copper ¥	ug/L	115	0.50	34	4.45	5	1000	22	0
Fluoranthene		no data							
Lead ¥	ug/L	100	0	75.00	6.98	5	10	26	8
Mercury	ug/L	25	0.02	0.50	0.12	0.2	1	12	0
Nickel	ug/L	82	0.002	60.60	2.70	25		1	0
PCB		no data							
Phenanthrene		no data							
Silver		no data							
Zinc ¥	ug/L	115	0.50	170	17.3	20	5000	22	0

Sewage Treatment Plant

An engineering report prepared by Paine Engineering (Paine 1995) concluded that the Sewage Treatment Plant effluent was by far the largest contributor of nutrients as well as leading in the production of Chlorides, Total Dissolved Solids, Total Suspended Solids, and the increased Biological Oxygen Demand. The data from the sewage treatment plant was reviewed and the study team found that none of the 18 contaminants found in either the sediment or the landfill groundwater samples are routinely tested in effluent at the sewage treatment plant (Corporation of the County of Prince Edward County). Therefore there is a lack of evidence to draw any conclusion that the sewage treatment plant could be a source of the contaminants nor can it be ruled out.

Storm Sewer Outfalls

Recent sampling of two storm sewer outfalls within the Marsh Creek watershed was completed by Quinte Conservation staff for the Bay of Quinte Pollution Prevention and Control Plan (BQRAP 2010). Storm sewer outfall sampling sites P1 and P2 were two of 11 sampling sites and were located furthest upstream in the creek (Figure 2). The data for sites P1 and P2 were reviewed for the 12 sediment contaminants to see whether storm outfalls could be a potential source. Only six of the parameters were tested and all six were present. These were: Cadmium, Chromium, Copper, Lead, Nickel and Zinc (see Table 7). No landfill groundwater contaminants were tested in the storm outfall work.

Table 7: Summary statistics for the sediment contaminants observed in storm sewer outlet samples taken by Quinte Conservation staff in 2008 and 2009. Contaminants in bold were detected in storm sewer outlet samples (BQRAP 2010).

		Site P1				Site P2				
	Unit	Count	Min	Max	Average	Count	Min	Max	Average	
Wet-weather samples										
Arsenic		no data				no data				
Cadmium	ug/L	2	0.27	0.39	0.33	5	0.14	1.23	0.68	
Chromium	ug/L	2	3.9	3.93	3.92	5	0.82	4.3	2.45	
Copper	ug/L	2	6.32	7.85	7.09	5	2.29	11.9	5.94	
Fluoranthene		no data				no data				
Lead	ug/L	2	1.93	13.5	7.715	5	0	13.9	3.85	
Mercury		no data				no data				
Nickel	ug/L	2	1.02	2.41	1.715	5	0	2.56	0.86	
PCB		no data				no data				
Phenanthrene		no data				no data				
Silver		no data				no data				
Zinc	ug/L	2	36	53	44	5	14.5	60.7	33.26	
Dry-weather samples										
Arsenic		no data				no data				
Cadmium	ug/L	1	0.519	0.519	0.519	4	0.27	2.39	1.32	
Chromium	ug/L	1	1.05	1.05	1.05	4	0.085	1.25	0.86	
Copper	ug/L	1	1.52	1.52	1.52	4	1	3.91	2.21	
Fluoranthene		no data				no data				
Lead	ug/L	1	4.3	4.3	4.3	4	0	6040	1510	
Mercury		no data				no data				
Nickel	ug/L	1	1.33	1.33	1.33	4	0	1.5	0.63	
PCB		no data				no data				
Phenanthrene		no data				no data				
Silver		no data				no data				
Zinc	ug/L	1	10.9	10.9	10.9	4	1.06	33	11.4	

It is interesting to note that generally, all of the contaminants had higher concentrations in wet-weather samples with the exception of Cadmium. Wet weather flows generally contain contaminants that are washed from road surfaces and other urban surface features. Dry-weather flows generally would be comprised of flow inputs from illegal sanitary cross connections and other commercial and industrial connections. The results of the testing suggested the contaminants entering Marsh Creek from the storm sewer system are from surface sources such as municipal roads.

Also, the storm contaminants from the storm outfalls are generally higher in concentration than the creek with the exception of Nickel and Lead. Nickel was consistently higher in the creek sampling and Lead was generally lower in the storm outfalls. The exception was one sample result from Lead in outfall P2 during dry flows that had a count 1,510 ug/L well in excess of the Provincial Water Quality Objective of 5 ug/L. It is likely that Nickel and Lead measured in the creek are derived from other sources in the watershed.

Summary

The closed Delhi Park landfill site was reviewed for its potential impact to the drinking water system in Picton. Six groundwater contaminants from the closed landfill site exceeded Table 2 potable groundwater conditions standards. This made the site a Condition under the Ontario Drinking Water Source Protection Conditions Approach for threats assessment at the Picton drinking water system. Of the six contaminants, five were tested and detected in raw water at the drinking water system.

Twelve contaminants observed in sediment samples taken from Picton Bay exceeded the Table 1 sediment condition standards. All were measured and ten were detected in the raw water at the Picton DWS.

Water quality results for Marsh Creek, the sewage treatment plant effluent and storm sewer outfalls were also reviewed. It was found that of the six groundwater contaminants none were tested in the creek monitoring program. Of the 12 sediment contaminants only eight were monitored and all eight are detected in water from the creek.

The sewage treatment plant effluent is not monitored for any of the six groundwater or 12 sediment contaminants. The storm outfalls monitoring work measured no groundwater contaminants and six of the total 12 sediment contaminants. All six were

detected and most were during periods of wet weather suggesting the source is likely from urban runoff. Nickel and Lead were found in higher concentrations in the Marsh Creek sampling suggesting that they are derived from other sources in the watershed.

It is recommended that existing monitoring programs be continued enabling study of the drinking water system and allowing source tracking of contaminants.

References

Biberhofer and Dunnett, 2006. Summary of recent sediment investigations for the Bay of Quinte, Lake Ontario. Environment Canada. National Water Research Institute. NWRI 06-229, September 2006.

BQRAP, 2010. Bay of Quinte Pollution Prevention and Control Plan. Prepared by Quinte Conservation for the Bay of Quinte Remedial Action Plan.

Corporation of the County of Prince Edward. 2007 to 2010. Picton Sewage Treatment Plant effluent data.

Ontario Ministry of the Environment. 1991 to 2007. Drinking Water Surveillance Program data.

Ontario Ministry of the Environment. 1984 to 2010. Provincial Water Quality Monitoring Network data for Marsh Creek site.

Paine, 1995. Feasibility study for a rehabilitation project on Marsh Creek – Picton. Prepared by J.D. Paine Engineering Inc. January 1995.

WESA, 1989. Hydrogeological assessment of Delhi Park Waste Disposal Site, Picton. Prepared by Water and Earth Science Associates Limited, August 1989.